{"title":"使用EfficientNet进行前列腺活检格里森分级的深度学习网络。","authors":"Karthik Ramamurthy, Abinash Reddy Varikuti, Bhavya Gupta, Nehal Aswani","doi":"10.1515/bmt-2022-0201","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The most crucial part in the diagnosis of cancer is severity grading. Gleason's score is a widely used grading system for prostate cancer. Manual examination of the microscopic images and grading them is tiresome and consumes a lot of time. Hence to automate the Gleason grading process, a novel deep learning network is proposed in this work.</p><p><strong>Methods: </strong>In this work, a deep learning network for Gleason grading of prostate cancer is proposed based on EfficientNet architecture. It applies a compound scaling method to balance the dimensions of the underlying network. Also, an additional attention branch is added to EfficientNet-B7 for precise feature weighting.</p><p><strong>Result: </strong>To the best of our knowledge, this is the first work that integrates an additional attention branch with EfficientNet architecture for Gleason grading. The proposed models were trained using H&E-stained samples from prostate cancer Tissue Microarrays (TMAs) in the Harvard Dataverse dataset.</p><p><strong>Conclusions: </strong>The proposed network was able to outperform the existing methods and it achieved an Kappa score of 0.5775.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A deep learning network for Gleason grading of prostate biopsies using EfficientNet.\",\"authors\":\"Karthik Ramamurthy, Abinash Reddy Varikuti, Bhavya Gupta, Nehal Aswani\",\"doi\":\"10.1515/bmt-2022-0201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>The most crucial part in the diagnosis of cancer is severity grading. Gleason's score is a widely used grading system for prostate cancer. Manual examination of the microscopic images and grading them is tiresome and consumes a lot of time. Hence to automate the Gleason grading process, a novel deep learning network is proposed in this work.</p><p><strong>Methods: </strong>In this work, a deep learning network for Gleason grading of prostate cancer is proposed based on EfficientNet architecture. It applies a compound scaling method to balance the dimensions of the underlying network. Also, an additional attention branch is added to EfficientNet-B7 for precise feature weighting.</p><p><strong>Result: </strong>To the best of our knowledge, this is the first work that integrates an additional attention branch with EfficientNet architecture for Gleason grading. The proposed models were trained using H&E-stained samples from prostate cancer Tissue Microarrays (TMAs) in the Harvard Dataverse dataset.</p><p><strong>Conclusions: </strong>The proposed network was able to outperform the existing methods and it achieved an Kappa score of 0.5775.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/bmt-2022-0201\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/bmt-2022-0201","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A deep learning network for Gleason grading of prostate biopsies using EfficientNet.
Objectives: The most crucial part in the diagnosis of cancer is severity grading. Gleason's score is a widely used grading system for prostate cancer. Manual examination of the microscopic images and grading them is tiresome and consumes a lot of time. Hence to automate the Gleason grading process, a novel deep learning network is proposed in this work.
Methods: In this work, a deep learning network for Gleason grading of prostate cancer is proposed based on EfficientNet architecture. It applies a compound scaling method to balance the dimensions of the underlying network. Also, an additional attention branch is added to EfficientNet-B7 for precise feature weighting.
Result: To the best of our knowledge, this is the first work that integrates an additional attention branch with EfficientNet architecture for Gleason grading. The proposed models were trained using H&E-stained samples from prostate cancer Tissue Microarrays (TMAs) in the Harvard Dataverse dataset.
Conclusions: The proposed network was able to outperform the existing methods and it achieved an Kappa score of 0.5775.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.