{"title":"球中的矩映射和等参超曲面- Grassmannian情形","authors":"Shinobu Fujii","doi":"10.1016/j.difgeo.2023.102072","DOIUrl":null,"url":null,"abstract":"<div><p>We expect that every Cartan–Münzner polynomial of degree four can be described as a squared-norm of a moment map for a Hamiltonian action. Our expectation is known to be true for Hermitian cases, that is, those obtained from the isotropy representations of compact irreducible Hermitian symmetric spaces of rank two. In this paper, we prove that our expectation is true for the Cartan–Münzner polynomials obtained from the isotropy representations of Grassmannian manifolds of rank two over <span><math><mi>R</mi></math></span>, <span><math><mi>C</mi></math></span> or <span><math><mi>H</mi></math></span>. The quaternion cases are the first non-Hermitian examples that our expectation is verified.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"91 ","pages":"Article 102072"},"PeriodicalIF":0.6000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Moment maps and isoparametric hypersurfaces in spheres — Grassmannian cases\",\"authors\":\"Shinobu Fujii\",\"doi\":\"10.1016/j.difgeo.2023.102072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We expect that every Cartan–Münzner polynomial of degree four can be described as a squared-norm of a moment map for a Hamiltonian action. Our expectation is known to be true for Hermitian cases, that is, those obtained from the isotropy representations of compact irreducible Hermitian symmetric spaces of rank two. In this paper, we prove that our expectation is true for the Cartan–Münzner polynomials obtained from the isotropy representations of Grassmannian manifolds of rank two over <span><math><mi>R</mi></math></span>, <span><math><mi>C</mi></math></span> or <span><math><mi>H</mi></math></span>. The quaternion cases are the first non-Hermitian examples that our expectation is verified.</p></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":\"91 \",\"pages\":\"Article 102072\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224523000980\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224523000980","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们期望每一个四次的cartan - m nzner多项式都可以被描述为哈密顿作用的矩映射的平方范数。我们的期望对于厄米对称情况是成立的,也就是那些从紧不可约的厄米对称空间的各向同性表示中得到的情况。本文证明了由R、C或h上的2阶格拉斯曼流形的各向同性表示得到的cartan - m nzner多项式的期望是成立的,四元数情况是第一个证明我们期望的非厄米例子。
Moment maps and isoparametric hypersurfaces in spheres — Grassmannian cases
We expect that every Cartan–Münzner polynomial of degree four can be described as a squared-norm of a moment map for a Hamiltonian action. Our expectation is known to be true for Hermitian cases, that is, those obtained from the isotropy representations of compact irreducible Hermitian symmetric spaces of rank two. In this paper, we prove that our expectation is true for the Cartan–Münzner polynomials obtained from the isotropy representations of Grassmannian manifolds of rank two over , or . The quaternion cases are the first non-Hermitian examples that our expectation is verified.
期刊介绍:
Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.