{"title":"拓扑尾依赖:来自预测已实现波动的证据","authors":"Hugo Gobato Souto","doi":"10.1016/j.jfds.2023.100107","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes a novel theory, coined as Topological Tail Dependence Theory, that links the mathematical theory behind Persistent Homology (PH) and the financial stock market theory. This study also proposes a novel algorithm to measure topological stock market changes as well as the incorporation of these topological changes into forecasting realized volatility (RV) models to improve their forecast performance during turbulent periods. The results of the empirical experimentation of this study provide evidence that the predictions drawn from the Topological Tail Dependence Theory are correct and indicate that the employment of PH information allows nonlinear and neural network models to better forecast RV during a turbulent period.</p></div>","PeriodicalId":36340,"journal":{"name":"Journal of Finance and Data Science","volume":"9 ","pages":"Article 100107"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405918823000235/pdfft?md5=72e1114c64fc1153368f76b24fe561aa&pid=1-s2.0-S2405918823000235-main.pdf","citationCount":"2","resultStr":"{\"title\":\"Topological tail dependence: Evidence from forecasting realized volatility\",\"authors\":\"Hugo Gobato Souto\",\"doi\":\"10.1016/j.jfds.2023.100107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper proposes a novel theory, coined as Topological Tail Dependence Theory, that links the mathematical theory behind Persistent Homology (PH) and the financial stock market theory. This study also proposes a novel algorithm to measure topological stock market changes as well as the incorporation of these topological changes into forecasting realized volatility (RV) models to improve their forecast performance during turbulent periods. The results of the empirical experimentation of this study provide evidence that the predictions drawn from the Topological Tail Dependence Theory are correct and indicate that the employment of PH information allows nonlinear and neural network models to better forecast RV during a turbulent period.</p></div>\",\"PeriodicalId\":36340,\"journal\":{\"name\":\"Journal of Finance and Data Science\",\"volume\":\"9 \",\"pages\":\"Article 100107\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405918823000235/pdfft?md5=72e1114c64fc1153368f76b24fe561aa&pid=1-s2.0-S2405918823000235-main.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Finance and Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405918823000235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Finance and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405918823000235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Topological tail dependence: Evidence from forecasting realized volatility
This paper proposes a novel theory, coined as Topological Tail Dependence Theory, that links the mathematical theory behind Persistent Homology (PH) and the financial stock market theory. This study also proposes a novel algorithm to measure topological stock market changes as well as the incorporation of these topological changes into forecasting realized volatility (RV) models to improve their forecast performance during turbulent periods. The results of the empirical experimentation of this study provide evidence that the predictions drawn from the Topological Tail Dependence Theory are correct and indicate that the employment of PH information allows nonlinear and neural network models to better forecast RV during a turbulent period.