Mitsuhiro Inoue, Ryo Yamaguchi, Ching Chi Jimmy He, Atsushi Ikeda, Hideyuki Okano, Jun Kohyama
{"title":"利用人诱导多能干细胞治疗脊髓损伤的研究现状及展望","authors":"Mitsuhiro Inoue, Ryo Yamaguchi, Ching Chi Jimmy He, Atsushi Ikeda, Hideyuki Okano, Jun Kohyama","doi":"10.21037/sci-2022-037","DOIUrl":null,"url":null,"abstract":"<p><p>Spinal cord injury (SCI) is damage to the spinal cord due to trauma or health conditions, resulting in lesions in the spinal cord. Currently, available treatment includes surgical intervention to decompress or stabilize a dislocated loose spine, steroid drugs to reduce inflammation, and subsequent rehabilitation. As there is a rising number of SCI globally, radical treatments to recover spinal cord functions have become highly anticipated. The development of new treatments is indeed progressing. Various therapeutic drug candidates are being developed in clinical trials, including neuroprotective/neurotrophic factors, antibodies for repulsive guidance molecules, and cell transplantation. Among them, with advances in stem cell biology, cell transplantation therapy is currently a promising therapeutic development for SCI. In particular, there have been various reports regarding the realization of regenerative medicine using human induced pluripotent stem cells (iPSCs). This review will introduce the advantages of cell-based therapy based on iPSC-derived neural stem/progenitor cells (iPSC-NS/PCs) and some of their mechanisms of action for functional improvement, which have recently been elucidated. Potential challenges and methodologies to realize the clinical application of iPSC-NS/PCs not only for the subacute phase but also for the chronic phase of SCI will be presented. Finally, we also introduce recent research with a view to the clinical application of spinal cord regenerative therapy and discuss future prospects.</p>","PeriodicalId":21938,"journal":{"name":"Stem cell investigation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/11/19/sci-10-2022-037.PMC10036917.pdf","citationCount":"1","resultStr":"{\"title\":\"Current status and prospects of regenerative medicine for spinal cord injury using human induced pluripotent stem cells: a review.\",\"authors\":\"Mitsuhiro Inoue, Ryo Yamaguchi, Ching Chi Jimmy He, Atsushi Ikeda, Hideyuki Okano, Jun Kohyama\",\"doi\":\"10.21037/sci-2022-037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Spinal cord injury (SCI) is damage to the spinal cord due to trauma or health conditions, resulting in lesions in the spinal cord. Currently, available treatment includes surgical intervention to decompress or stabilize a dislocated loose spine, steroid drugs to reduce inflammation, and subsequent rehabilitation. As there is a rising number of SCI globally, radical treatments to recover spinal cord functions have become highly anticipated. The development of new treatments is indeed progressing. Various therapeutic drug candidates are being developed in clinical trials, including neuroprotective/neurotrophic factors, antibodies for repulsive guidance molecules, and cell transplantation. Among them, with advances in stem cell biology, cell transplantation therapy is currently a promising therapeutic development for SCI. In particular, there have been various reports regarding the realization of regenerative medicine using human induced pluripotent stem cells (iPSCs). This review will introduce the advantages of cell-based therapy based on iPSC-derived neural stem/progenitor cells (iPSC-NS/PCs) and some of their mechanisms of action for functional improvement, which have recently been elucidated. Potential challenges and methodologies to realize the clinical application of iPSC-NS/PCs not only for the subacute phase but also for the chronic phase of SCI will be presented. Finally, we also introduce recent research with a view to the clinical application of spinal cord regenerative therapy and discuss future prospects.</p>\",\"PeriodicalId\":21938,\"journal\":{\"name\":\"Stem cell investigation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/11/19/sci-10-2022-037.PMC10036917.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem cell investigation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21037/sci-2022-037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem cell investigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21037/sci-2022-037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Current status and prospects of regenerative medicine for spinal cord injury using human induced pluripotent stem cells: a review.
Spinal cord injury (SCI) is damage to the spinal cord due to trauma or health conditions, resulting in lesions in the spinal cord. Currently, available treatment includes surgical intervention to decompress or stabilize a dislocated loose spine, steroid drugs to reduce inflammation, and subsequent rehabilitation. As there is a rising number of SCI globally, radical treatments to recover spinal cord functions have become highly anticipated. The development of new treatments is indeed progressing. Various therapeutic drug candidates are being developed in clinical trials, including neuroprotective/neurotrophic factors, antibodies for repulsive guidance molecules, and cell transplantation. Among them, with advances in stem cell biology, cell transplantation therapy is currently a promising therapeutic development for SCI. In particular, there have been various reports regarding the realization of regenerative medicine using human induced pluripotent stem cells (iPSCs). This review will introduce the advantages of cell-based therapy based on iPSC-derived neural stem/progenitor cells (iPSC-NS/PCs) and some of their mechanisms of action for functional improvement, which have recently been elucidated. Potential challenges and methodologies to realize the clinical application of iPSC-NS/PCs not only for the subacute phase but also for the chronic phase of SCI will be presented. Finally, we also introduce recent research with a view to the clinical application of spinal cord regenerative therapy and discuss future prospects.
期刊介绍:
The Stem Cell Investigation (SCI; Stem Cell Investig; Online ISSN: 2313-0792) is a free access, peer-reviewed online journal covering basic, translational, and clinical research on all aspects of stem cells. It publishes original research articles and reviews on embryonic stem cells, induced pluripotent stem cells, adult tissue-specific stem/progenitor cells, cancer stem like cells, stem cell niche, stem cell technology, stem cell based drug discovery, and regenerative medicine. Stem Cell Investigation is indexed in PubMed/PMC since April, 2016.