{"title":"Ofatumumab和颗粒酶B作为CD20抗原的免疫毒素。","authors":"Fateme Sefid, Armina Alagheband Bahrami, Zahra Payandeh, Saeed Khalili, Ghasem Azamirad, Seyed Mehdy Kalantar, Maryam Touhidinia","doi":"10.1007/s40203-022-00120-6","DOIUrl":null,"url":null,"abstract":"<p><p>Anti-CD20 antibodies such as ofatumumab has demonstrated efficacy in relapsed/refractory chronic lymphocytic leukemia, are among the most successful therapies to date. In this study, we have designed an immunotoxin composed of Granzyme B and the high affinity variant of Ofatumumab. Different simulation software applied to explore the structure of Granzyme B, a serine protease in cytotoxic lymphocytes granules as an apoptosis mediator was attached to its specific antibody structure (Ofatumumab) via an adaptor sequence. The accuracy, energy minimization and characterization of biological properties of the final structure were evaluated. Our computational outcomes indicated that the employed method for structure prediction has been successfully managed to design the immunotoxin structure. The precise and accurate design of the immune-therapeutic agents against cancer cells can be confirmed by employment of in-silico approaches. Consequently, based on this approach we could introduce a capable immunotoxin which specifically targeting CD20 in an accurate orientation and initiates cancer cell destruction by its toxin domain.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s40203-022-00120-6.</p>","PeriodicalId":13380,"journal":{"name":"In Silico Pharmacology","volume":"10 1","pages":"6"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8933591/pdf/40203_2022_Article_120.pdf","citationCount":"1","resultStr":"{\"title\":\"Ofatumumab and Granzyme B as immunotoxin against CD20 antigen.\",\"authors\":\"Fateme Sefid, Armina Alagheband Bahrami, Zahra Payandeh, Saeed Khalili, Ghasem Azamirad, Seyed Mehdy Kalantar, Maryam Touhidinia\",\"doi\":\"10.1007/s40203-022-00120-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Anti-CD20 antibodies such as ofatumumab has demonstrated efficacy in relapsed/refractory chronic lymphocytic leukemia, are among the most successful therapies to date. In this study, we have designed an immunotoxin composed of Granzyme B and the high affinity variant of Ofatumumab. Different simulation software applied to explore the structure of Granzyme B, a serine protease in cytotoxic lymphocytes granules as an apoptosis mediator was attached to its specific antibody structure (Ofatumumab) via an adaptor sequence. The accuracy, energy minimization and characterization of biological properties of the final structure were evaluated. Our computational outcomes indicated that the employed method for structure prediction has been successfully managed to design the immunotoxin structure. The precise and accurate design of the immune-therapeutic agents against cancer cells can be confirmed by employment of in-silico approaches. Consequently, based on this approach we could introduce a capable immunotoxin which specifically targeting CD20 in an accurate orientation and initiates cancer cell destruction by its toxin domain.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s40203-022-00120-6.</p>\",\"PeriodicalId\":13380,\"journal\":{\"name\":\"In Silico Pharmacology\",\"volume\":\"10 1\",\"pages\":\"6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8933591/pdf/40203_2022_Article_120.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"In Silico Pharmacology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40203-022-00120-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Silico Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40203-022-00120-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ofatumumab and Granzyme B as immunotoxin against CD20 antigen.
Anti-CD20 antibodies such as ofatumumab has demonstrated efficacy in relapsed/refractory chronic lymphocytic leukemia, are among the most successful therapies to date. In this study, we have designed an immunotoxin composed of Granzyme B and the high affinity variant of Ofatumumab. Different simulation software applied to explore the structure of Granzyme B, a serine protease in cytotoxic lymphocytes granules as an apoptosis mediator was attached to its specific antibody structure (Ofatumumab) via an adaptor sequence. The accuracy, energy minimization and characterization of biological properties of the final structure were evaluated. Our computational outcomes indicated that the employed method for structure prediction has been successfully managed to design the immunotoxin structure. The precise and accurate design of the immune-therapeutic agents against cancer cells can be confirmed by employment of in-silico approaches. Consequently, based on this approach we could introduce a capable immunotoxin which specifically targeting CD20 in an accurate orientation and initiates cancer cell destruction by its toxin domain.
Supplementary information: The online version contains supplementary material available at 10.1007/s40203-022-00120-6.