{"title":"Mobarakeh钢铁公司采用印刷线路板式Rogowski线圈的电弧炉电流测量系统的设计与制造","authors":"Reza Sadeghi, Haidar Samet, Teymoor Ghanbari, Darioush Daryabar","doi":"10.1049/smt2.12109","DOIUrl":null,"url":null,"abstract":"<p>This paper deals with the utilization of printed circuit board Rogowski coils (PCBRCs) for differential protection of electric arc furnace (EAF) transformers in Mobarakeh Steel Company (MSC), Isfahan, Iran. Because of a high level of current (in the range of 100 kA) in the EAF transformers in the MSC, employment of differential protection is quite challenging. Conventional current transformers (CTs) cannot offer reliable performance for very high current levels. The PCBRCs are a branch of Rogowski coils (RCs) that can be manufactured with high precision using computer-aided design approaches and have the capability for the measurement of very large currents. In this study, we have designed and manufactured two sets of PCBRCs to measure current in the primary and secondary sides of the EAF's transformers in the MSC. The PCBRCs are followed by a signal condition circuit (SCC) which includes a low-pass filter, amplifier, and voltage-to-current (<i>V</i>-to-<i>I</i>) converter block. Thanks to the SCC, the high current of the transformers can be properly sensed and transmitted over a long cable that connects the PCBRCs to the relay. Furthermore, a novel model is suggested for the EAF that includes characteristics of both time and frequency domain models. The suggested model is developed using a large number of recorded data from the MSC and can model the non-linear and time-variant behaviours of the EAF. The proposed PCBRCs, SCC, and EAF modelling are evaluated by some simulations and experiments in the MSC.</p>","PeriodicalId":54999,"journal":{"name":"Iet Science Measurement & Technology","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/smt2.12109","citationCount":"0","resultStr":"{\"title\":\"Designing and manufacturing of electric arc furnace currents measurement system in Mobarakeh Steel Company by printed circuit board-type Rogowski coils\",\"authors\":\"Reza Sadeghi, Haidar Samet, Teymoor Ghanbari, Darioush Daryabar\",\"doi\":\"10.1049/smt2.12109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper deals with the utilization of printed circuit board Rogowski coils (PCBRCs) for differential protection of electric arc furnace (EAF) transformers in Mobarakeh Steel Company (MSC), Isfahan, Iran. Because of a high level of current (in the range of 100 kA) in the EAF transformers in the MSC, employment of differential protection is quite challenging. Conventional current transformers (CTs) cannot offer reliable performance for very high current levels. The PCBRCs are a branch of Rogowski coils (RCs) that can be manufactured with high precision using computer-aided design approaches and have the capability for the measurement of very large currents. In this study, we have designed and manufactured two sets of PCBRCs to measure current in the primary and secondary sides of the EAF's transformers in the MSC. The PCBRCs are followed by a signal condition circuit (SCC) which includes a low-pass filter, amplifier, and voltage-to-current (<i>V</i>-to-<i>I</i>) converter block. Thanks to the SCC, the high current of the transformers can be properly sensed and transmitted over a long cable that connects the PCBRCs to the relay. Furthermore, a novel model is suggested for the EAF that includes characteristics of both time and frequency domain models. The suggested model is developed using a large number of recorded data from the MSC and can model the non-linear and time-variant behaviours of the EAF. The proposed PCBRCs, SCC, and EAF modelling are evaluated by some simulations and experiments in the MSC.</p>\",\"PeriodicalId\":54999,\"journal\":{\"name\":\"Iet Science Measurement & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/smt2.12109\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Science Measurement & Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/smt2.12109\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Science Measurement & Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/smt2.12109","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Designing and manufacturing of electric arc furnace currents measurement system in Mobarakeh Steel Company by printed circuit board-type Rogowski coils
This paper deals with the utilization of printed circuit board Rogowski coils (PCBRCs) for differential protection of electric arc furnace (EAF) transformers in Mobarakeh Steel Company (MSC), Isfahan, Iran. Because of a high level of current (in the range of 100 kA) in the EAF transformers in the MSC, employment of differential protection is quite challenging. Conventional current transformers (CTs) cannot offer reliable performance for very high current levels. The PCBRCs are a branch of Rogowski coils (RCs) that can be manufactured with high precision using computer-aided design approaches and have the capability for the measurement of very large currents. In this study, we have designed and manufactured two sets of PCBRCs to measure current in the primary and secondary sides of the EAF's transformers in the MSC. The PCBRCs are followed by a signal condition circuit (SCC) which includes a low-pass filter, amplifier, and voltage-to-current (V-to-I) converter block. Thanks to the SCC, the high current of the transformers can be properly sensed and transmitted over a long cable that connects the PCBRCs to the relay. Furthermore, a novel model is suggested for the EAF that includes characteristics of both time and frequency domain models. The suggested model is developed using a large number of recorded data from the MSC and can model the non-linear and time-variant behaviours of the EAF. The proposed PCBRCs, SCC, and EAF modelling are evaluated by some simulations and experiments in the MSC.
期刊介绍:
IET Science, Measurement & Technology publishes papers in science, engineering and technology underpinning electronic and electrical engineering, nanotechnology and medical instrumentation.The emphasis of the journal is on theory, simulation methodologies and measurement techniques.
The major themes of the journal are:
- electromagnetism including electromagnetic theory, computational electromagnetics and EMC
- properties and applications of dielectric, magnetic, magneto-optic, piezoelectric materials down to the nanometre scale
- measurement and instrumentation including sensors, actuators, medical instrumentation, fundamentals of measurement including measurement standards, uncertainty, dissemination and calibration
Applications are welcome for illustrative purposes but the novelty and originality should focus on the proposed new methods.