Koji Yamaguchi, Hajime Miyaguchi, Youkichi Ohno, Yoshimasa Kanawaku
{"title":"利用液相色谱-串联质谱法对死后尿液中的 7- 和 8- 羟基唑吡坦进行定性分析,并发现新型唑吡坦代谢物。","authors":"Koji Yamaguchi, Hajime Miyaguchi, Youkichi Ohno, Yoshimasa Kanawaku","doi":"10.1007/s11419-021-00611-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Zolpidem (ZOL) is a hypnotic sometimes used in drug-facilitated crimes. Understanding ZOL metabolism is important for proving ZOL intake. In this study, we synthesized standards of hydroxyzolpidems with a hydroxy group attached to the pyridine ring and analyzed them to prove their presence in postmortem urine. We also searched for novel ZOL metabolites in the urine sample using liquid chromatography-triple quadrupole mass spectrometry (LC-QqQMS) and liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QqTOFMS).</p><p><strong>Methods: </strong>7- and 8-Hydroxyzolpidem (7OHZ and 8OHZ, respectively) were synthesized and analyzed using LC-QqQMS. Retention times were compared between the synthetic standards and extracts of postmortem urine. To search for novel ZOL metabolites, first, the urine extract was analyzed with data-dependent acquisition, and the peaks showing the characteristic fragmentation pattern of ZOL were selected. Second, product ion spectra of these peaks at various collision energies were acquired and fragments that could be used for multiple reaction monitoring (MRM) were chosen. Finally, MRM parameters were optimized using the urine extract. These peaks were also analyzed using LC-QqTOFMS.</p><p><strong>Results: </strong>The presence of 7OHZ and 8OHZ in urine was confirmed. The highest peak among hydroxyzolpidems was assigned to 7OHZ. The novel metabolites found were zolpidem dihydrodiol and its glucuronides, cysteine adducts of ZOL and dihydro(hydroxy)zolpidem, and glucuronides of hydroxyzolpidems.</p><p><strong>Conclusions: </strong>The presence of novel metabolites revealed new metabolic pathways, which involve formation of an epoxide on the pyridine ring as an intermediate.</p>","PeriodicalId":12329,"journal":{"name":"Forensic Toxicology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9715527/pdf/","citationCount":"0","resultStr":"{\"title\":\"Qualitative analysis of 7- and 8-hydroxyzolpidem and discovery of novel zolpidem metabolites in postmortem urine using liquid chromatography-tandem mass spectrometry.\",\"authors\":\"Koji Yamaguchi, Hajime Miyaguchi, Youkichi Ohno, Yoshimasa Kanawaku\",\"doi\":\"10.1007/s11419-021-00611-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Zolpidem (ZOL) is a hypnotic sometimes used in drug-facilitated crimes. Understanding ZOL metabolism is important for proving ZOL intake. In this study, we synthesized standards of hydroxyzolpidems with a hydroxy group attached to the pyridine ring and analyzed them to prove their presence in postmortem urine. We also searched for novel ZOL metabolites in the urine sample using liquid chromatography-triple quadrupole mass spectrometry (LC-QqQMS) and liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QqTOFMS).</p><p><strong>Methods: </strong>7- and 8-Hydroxyzolpidem (7OHZ and 8OHZ, respectively) were synthesized and analyzed using LC-QqQMS. Retention times were compared between the synthetic standards and extracts of postmortem urine. To search for novel ZOL metabolites, first, the urine extract was analyzed with data-dependent acquisition, and the peaks showing the characteristic fragmentation pattern of ZOL were selected. Second, product ion spectra of these peaks at various collision energies were acquired and fragments that could be used for multiple reaction monitoring (MRM) were chosen. Finally, MRM parameters were optimized using the urine extract. These peaks were also analyzed using LC-QqTOFMS.</p><p><strong>Results: </strong>The presence of 7OHZ and 8OHZ in urine was confirmed. The highest peak among hydroxyzolpidems was assigned to 7OHZ. The novel metabolites found were zolpidem dihydrodiol and its glucuronides, cysteine adducts of ZOL and dihydro(hydroxy)zolpidem, and glucuronides of hydroxyzolpidems.</p><p><strong>Conclusions: </strong>The presence of novel metabolites revealed new metabolic pathways, which involve formation of an epoxide on the pyridine ring as an intermediate.</p>\",\"PeriodicalId\":12329,\"journal\":{\"name\":\"Forensic Toxicology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9715527/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forensic Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11419-021-00611-9\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11419-021-00611-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Qualitative analysis of 7- and 8-hydroxyzolpidem and discovery of novel zolpidem metabolites in postmortem urine using liquid chromatography-tandem mass spectrometry.
Purpose: Zolpidem (ZOL) is a hypnotic sometimes used in drug-facilitated crimes. Understanding ZOL metabolism is important for proving ZOL intake. In this study, we synthesized standards of hydroxyzolpidems with a hydroxy group attached to the pyridine ring and analyzed them to prove their presence in postmortem urine. We also searched for novel ZOL metabolites in the urine sample using liquid chromatography-triple quadrupole mass spectrometry (LC-QqQMS) and liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QqTOFMS).
Methods: 7- and 8-Hydroxyzolpidem (7OHZ and 8OHZ, respectively) were synthesized and analyzed using LC-QqQMS. Retention times were compared between the synthetic standards and extracts of postmortem urine. To search for novel ZOL metabolites, first, the urine extract was analyzed with data-dependent acquisition, and the peaks showing the characteristic fragmentation pattern of ZOL were selected. Second, product ion spectra of these peaks at various collision energies were acquired and fragments that could be used for multiple reaction monitoring (MRM) were chosen. Finally, MRM parameters were optimized using the urine extract. These peaks were also analyzed using LC-QqTOFMS.
Results: The presence of 7OHZ and 8OHZ in urine was confirmed. The highest peak among hydroxyzolpidems was assigned to 7OHZ. The novel metabolites found were zolpidem dihydrodiol and its glucuronides, cysteine adducts of ZOL and dihydro(hydroxy)zolpidem, and glucuronides of hydroxyzolpidems.
Conclusions: The presence of novel metabolites revealed new metabolic pathways, which involve formation of an epoxide on the pyridine ring as an intermediate.
期刊介绍:
The journal Forensic Toxicology provides an international forum for publication of studies on toxic substances, drugs of abuse, doping agents, chemical warfare agents, and their metabolisms and analyses, which are related to laws and ethics. It includes original articles, reviews, mini-reviews, short communications, and case reports. Although a major focus of the journal is on the development or improvement of analytical methods for the above-mentioned chemicals in human matrices, appropriate studies with animal experiments are also published.
Forensic Toxicology is the official publication of the Japanese Association of Forensic Toxicology (JAFT) and is the continuation of the Japanese Journal of Forensic Toxicology (ISSN 0915-9606).