SRAS-net:基于深度学习的低分辨率染色体图像分类

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiangbin Liu, Lijun Fu, Jerry Chun-Wei Lin, Shuai Liu
{"title":"SRAS-net:基于深度学习的低分辨率染色体图像分类","authors":"Xiangbin Liu,&nbsp;Lijun Fu,&nbsp;Jerry Chun-Wei Lin,&nbsp;Shuai Liu","doi":"10.1049/syb2.12042","DOIUrl":null,"url":null,"abstract":"<p>Prenatal karyotype diagnosis is important to determine if the foetus has genetic diseases and some congenital diseases. Chromosome classification is an important part of karyotype analysis, and the task is tedious and lengthy. Chromosome classification methods based on deep learning have achieved good results, but if the quality of the chromosome image is not high, these methods cannot learn image features well, resulting in unsatisfactory classification results. Moreover, the existing methods generally have a poor effect on sex chromosome classification. Therefore, in this work, the authors propose to use a super-resolution network, Self-Attention Negative Feedback Network, and combine it with traditional neural networks to obtain an efficient chromosome classification method called SRAS-net. The method first inputs the low-resolution chromosome images into the super-resolution network to generate high-resolution chromosome images and then uses the traditional deep learning model to classify the chromosomes. To solve the problem of inaccurate sex chromosome classification, the authors also propose to use the SMOTE algorithm to generate a small number of sex chromosome samples to ensure a balanced number of samples while allowing the model to learn more sex chromosome features. Experimental results show that our method achieves 97.55% accuracy and is better than state-of-the-art methods.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9290780/pdf/","citationCount":"10","resultStr":"{\"title\":\"SRAS-net: Low-resolution chromosome image classification based on deep learning\",\"authors\":\"Xiangbin Liu,&nbsp;Lijun Fu,&nbsp;Jerry Chun-Wei Lin,&nbsp;Shuai Liu\",\"doi\":\"10.1049/syb2.12042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Prenatal karyotype diagnosis is important to determine if the foetus has genetic diseases and some congenital diseases. Chromosome classification is an important part of karyotype analysis, and the task is tedious and lengthy. Chromosome classification methods based on deep learning have achieved good results, but if the quality of the chromosome image is not high, these methods cannot learn image features well, resulting in unsatisfactory classification results. Moreover, the existing methods generally have a poor effect on sex chromosome classification. Therefore, in this work, the authors propose to use a super-resolution network, Self-Attention Negative Feedback Network, and combine it with traditional neural networks to obtain an efficient chromosome classification method called SRAS-net. The method first inputs the low-resolution chromosome images into the super-resolution network to generate high-resolution chromosome images and then uses the traditional deep learning model to classify the chromosomes. To solve the problem of inaccurate sex chromosome classification, the authors also propose to use the SMOTE algorithm to generate a small number of sex chromosome samples to ensure a balanced number of samples while allowing the model to learn more sex chromosome features. Experimental results show that our method achieves 97.55% accuracy and is better than state-of-the-art methods.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9290780/pdf/\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/syb2.12042\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/syb2.12042","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 10

摘要

产前核型诊断对确定胎儿是否有遗传性疾病和某些先天性疾病具有重要意义。染色体分类是核型分析的重要组成部分,其工作繁琐而冗长。基于深度学习的染色体分类方法已经取得了很好的效果,但是如果染色体图像的质量不高,这些方法不能很好地学习图像特征,导致分类结果不理想。而且,现有的方法对性染色体的分类效果一般较差。因此,在本工作中,作者提出使用超分辨率网络——自注意负反馈网络,并将其与传统神经网络相结合,得到一种高效的染色体分类方法SRAS-net。该方法首先将低分辨率的染色体图像输入到超分辨率网络中生成高分辨率的染色体图像,然后使用传统的深度学习模型对染色体进行分类。为了解决性染色体分类不准确的问题,作者还提出使用SMOTE算法生成少量的性染色体样本,以保证样本数量的平衡,同时允许模型学习更多的性染色体特征。实验结果表明,该方法的准确率为97.55%,优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

SRAS-net: Low-resolution chromosome image classification based on deep learning

SRAS-net: Low-resolution chromosome image classification based on deep learning

Prenatal karyotype diagnosis is important to determine if the foetus has genetic diseases and some congenital diseases. Chromosome classification is an important part of karyotype analysis, and the task is tedious and lengthy. Chromosome classification methods based on deep learning have achieved good results, but if the quality of the chromosome image is not high, these methods cannot learn image features well, resulting in unsatisfactory classification results. Moreover, the existing methods generally have a poor effect on sex chromosome classification. Therefore, in this work, the authors propose to use a super-resolution network, Self-Attention Negative Feedback Network, and combine it with traditional neural networks to obtain an efficient chromosome classification method called SRAS-net. The method first inputs the low-resolution chromosome images into the super-resolution network to generate high-resolution chromosome images and then uses the traditional deep learning model to classify the chromosomes. To solve the problem of inaccurate sex chromosome classification, the authors also propose to use the SMOTE algorithm to generate a small number of sex chromosome samples to ensure a balanced number of samples while allowing the model to learn more sex chromosome features. Experimental results show that our method achieves 97.55% accuracy and is better than state-of-the-art methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信