在q估计的基础上对尺度参数进行高效稳健的m估计

IF 0.2 Q4 PHYSICS, MULTIDISCIPLINARY
Pavel O. Smirnov, Ivan S. Shirokov, Georgiy L. Shevlyakov
{"title":"在q估计的基础上对尺度参数进行高效稳健的m估计","authors":"Pavel O. Smirnov,&nbsp;Ivan S. Shirokov,&nbsp;Georgiy L. Shevlyakov","doi":"10.1016/j.spjpm.2017.09.012","DOIUrl":null,"url":null,"abstract":"<div><p>The commonly employed highly efficient and robust <em>Q</em>-estimate of the scale parameter proposed by Rousseeuw and Croux has been approximated using computationally fast Huber <em>M</em>-estimates. The suggested <em>M</em>-estimates were shown to be robust and highly efficient for an arbitrary underlying data distribution due to correctly choosing the approximation parameters. The following indicators of the efficiency and robustness of <em>M</em>-estimates of scale were computed: their asymptotic variances, influence functions and breakdown points. Special attention was given to the particular cases of the Gaussian and Cauchy distributions. It is noteworthy that for the Cauchy distribution, the suggested robust estimate of scale coincides with the maximal likelihood estimate. Finally, the computation time of these highly efficient and robust estimates of scale is 3–4 times less than for the corresponding <em>Q</em>-estimates.</p></div>","PeriodicalId":41808,"journal":{"name":"St Petersburg Polytechnic University Journal-Physics and Mathematics","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.spjpm.2017.09.012","citationCount":"1","resultStr":"{\"title\":\"High-efficiency and robust M-estimates of the scale parameter on the Q-estimate basis\",\"authors\":\"Pavel O. Smirnov,&nbsp;Ivan S. Shirokov,&nbsp;Georgiy L. Shevlyakov\",\"doi\":\"10.1016/j.spjpm.2017.09.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The commonly employed highly efficient and robust <em>Q</em>-estimate of the scale parameter proposed by Rousseeuw and Croux has been approximated using computationally fast Huber <em>M</em>-estimates. The suggested <em>M</em>-estimates were shown to be robust and highly efficient for an arbitrary underlying data distribution due to correctly choosing the approximation parameters. The following indicators of the efficiency and robustness of <em>M</em>-estimates of scale were computed: their asymptotic variances, influence functions and breakdown points. Special attention was given to the particular cases of the Gaussian and Cauchy distributions. It is noteworthy that for the Cauchy distribution, the suggested robust estimate of scale coincides with the maximal likelihood estimate. Finally, the computation time of these highly efficient and robust estimates of scale is 3–4 times less than for the corresponding <em>Q</em>-estimates.</p></div>\",\"PeriodicalId\":41808,\"journal\":{\"name\":\"St Petersburg Polytechnic University Journal-Physics and Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.spjpm.2017.09.012\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"St Petersburg Polytechnic University Journal-Physics and Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405722317300981\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Polytechnic University Journal-Physics and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405722317300981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

常用的由Rousseeuw和Croux提出的尺度参数的高效鲁棒q估计已经使用计算速度快的Huber m估计进行了近似。由于正确选择近似参数,所建议的m估计对于任意底层数据分布具有鲁棒性和高效率。计算了尺度m估计的效率和稳健性的以下指标:它们的渐近方差、影响函数和崩溃点。特别注意高斯分布和柯西分布的特殊情况。值得注意的是,对于柯西分布,建议的稳健估计规模与最大似然估计一致。最后,这些高效且稳健的规模估计的计算时间比相应的q估计少3-4倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-efficiency and robust M-estimates of the scale parameter on the Q-estimate basis

The commonly employed highly efficient and robust Q-estimate of the scale parameter proposed by Rousseeuw and Croux has been approximated using computationally fast Huber M-estimates. The suggested M-estimates were shown to be robust and highly efficient for an arbitrary underlying data distribution due to correctly choosing the approximation parameters. The following indicators of the efficiency and robustness of M-estimates of scale were computed: their asymptotic variances, influence functions and breakdown points. Special attention was given to the particular cases of the Gaussian and Cauchy distributions. It is noteworthy that for the Cauchy distribution, the suggested robust estimate of scale coincides with the maximal likelihood estimate. Finally, the computation time of these highly efficient and robust estimates of scale is 3–4 times less than for the corresponding Q-estimates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
50.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信