verfurt h误差估计器对亥姆霍兹方程EF解的有效性

Simona Iremie, Philippe Bouillard
{"title":"verfurt h误差估计器对亥姆霍兹方程EF解的有效性","authors":"Simona Iremie,&nbsp;Philippe Bouillard","doi":"10.1016/S1287-4620(00)88418-5","DOIUrl":null,"url":null,"abstract":"<div><p>The finite element solution of Helmholtz equation is dispersive and the existent a posteriori error estimators underestimate the pollution error implied by this phenomenon. In this paper, a new type of residual estimator for the Helmholtz operator is proposed and tested on a one-dimensional model problem. The numerical results show that the error is correctly estimated but new difficulties appear in the exact evaluation of problem dependent constants.</p></div>","PeriodicalId":100303,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy","volume":"328 1","pages":"Pages 67-71"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1287-4620(00)88418-5","citationCount":"0","resultStr":"{\"title\":\"Efficacité de l'estimateur d'erreur de Verfürt h pour la solution EF de l'équation de Helmholtz\",\"authors\":\"Simona Iremie,&nbsp;Philippe Bouillard\",\"doi\":\"10.1016/S1287-4620(00)88418-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The finite element solution of Helmholtz equation is dispersive and the existent a posteriori error estimators underestimate the pollution error implied by this phenomenon. In this paper, a new type of residual estimator for the Helmholtz operator is proposed and tested on a one-dimensional model problem. The numerical results show that the error is correctly estimated but new difficulties appear in the exact evaluation of problem dependent constants.</p></div>\",\"PeriodicalId\":100303,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy\",\"volume\":\"328 1\",\"pages\":\"Pages 67-71\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1287-4620(00)88418-5\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1287462000884185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1287462000884185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

亥姆霍兹方程的有限元解是色散的,现有的后验误差估计器低估了这种现象所隐含的污染误差。本文提出了一种新的Helmholtz算子残差估计量,并在一维模型问题上进行了检验。数值结果表明,误差估计是正确的,但问题相关常数的精确计算出现了新的困难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficacité de l'estimateur d'erreur de Verfürt h pour la solution EF de l'équation de Helmholtz

The finite element solution of Helmholtz equation is dispersive and the existent a posteriori error estimators underestimate the pollution error implied by this phenomenon. In this paper, a new type of residual estimator for the Helmholtz operator is proposed and tested on a one-dimensional model problem. The numerical results show that the error is correctly estimated but new difficulties appear in the exact evaluation of problem dependent constants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信