Łukasiewicz环的非交换推广

Q1 Mathematics
Albert Kadji , Celestin Lele , Jean B. Nganou
{"title":"Łukasiewicz环的非交换推广","authors":"Albert Kadji ,&nbsp;Celestin Lele ,&nbsp;Jean B. Nganou","doi":"10.1016/j.jal.2016.04.001","DOIUrl":null,"url":null,"abstract":"<div><p>The goal of the present article is to extend the study of commutative rings whose ideals form an MV-algebra as carried out by Belluce and Di Nola <span>[1]</span> to non-commutative rings. We study and characterize all rings whose ideals form a pseudo MV-algebra, which shall be called here generalized Łukasiewicz rings. We obtain that these are (up to isomorphism) exactly the direct sums of unitary special primary rings.</p></div>","PeriodicalId":54881,"journal":{"name":"Journal of Applied Logic","volume":"16 ","pages":"Pages 1-13"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jal.2016.04.001","citationCount":"2","resultStr":"{\"title\":\"A non-commutative generalization of Łukasiewicz rings\",\"authors\":\"Albert Kadji ,&nbsp;Celestin Lele ,&nbsp;Jean B. Nganou\",\"doi\":\"10.1016/j.jal.2016.04.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The goal of the present article is to extend the study of commutative rings whose ideals form an MV-algebra as carried out by Belluce and Di Nola <span>[1]</span> to non-commutative rings. We study and characterize all rings whose ideals form a pseudo MV-algebra, which shall be called here generalized Łukasiewicz rings. We obtain that these are (up to isomorphism) exactly the direct sums of unitary special primary rings.</p></div>\",\"PeriodicalId\":54881,\"journal\":{\"name\":\"Journal of Applied Logic\",\"volume\":\"16 \",\"pages\":\"Pages 1-13\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jal.2016.04.001\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570868316300118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Logic","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570868316300118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

本文的目的是将Belluce和Di Nola[1]对理想构成mv代数的交换环的研究推广到非交换环。我们研究了理想构成伪mv代数的所有环,这里称之为广义Łukasiewicz环。我们得到了它们(在同构范围内)正是酉特殊原环的直接和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A non-commutative generalization of Łukasiewicz rings

The goal of the present article is to extend the study of commutative rings whose ideals form an MV-algebra as carried out by Belluce and Di Nola [1] to non-commutative rings. We study and characterize all rings whose ideals form a pseudo MV-algebra, which shall be called here generalized Łukasiewicz rings. We obtain that these are (up to isomorphism) exactly the direct sums of unitary special primary rings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Logic
Journal of Applied Logic COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
1.13
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Cessation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信