重温达科斯塔的逻辑

Q1 Mathematics
Mauricio Osorio Galindo , Verónica Borja Macías , José Ramón Enrique Arrazola Ramírez
{"title":"重温达科斯塔的逻辑","authors":"Mauricio Osorio Galindo ,&nbsp;Verónica Borja Macías ,&nbsp;José Ramón Enrique Arrazola Ramírez","doi":"10.1016/j.jal.2016.02.004","DOIUrl":null,"url":null,"abstract":"<div><p>In <span>[25]</span> Priest developed the da Costa logic (<strong>daC</strong>); this is a paraconsistent logic which is also a co-intuitionistic logic that contains the logic <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>ω</mi></mrow></msub></math></span>. Due to its interesting properties it has been studied by Castiglioni, Ertola and Ferguson, and some remarkable results about it and its extensions are shown in <span>[8]</span>, <span>[11]</span>. In the present article we continue the study of <strong>daC</strong>, we prove that a restricted Hilbert system for <strong>daC</strong>, named <em>DC</em>, satisfies certain properties that help us show that this logic is not a maximal paraconsistent system. We also study an extension of <strong>daC</strong> called <span><math><mi>P</mi><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and we give different characterizations of it. Finally we compare <strong>daC</strong> and <span><math><mi>P</mi><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> with several paraconsistent logics.</p></div>","PeriodicalId":54881,"journal":{"name":"Journal of Applied Logic","volume":"16 ","pages":"Pages 111-127"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jal.2016.02.004","citationCount":"8","resultStr":"{\"title\":\"Revisiting da Costa logic\",\"authors\":\"Mauricio Osorio Galindo ,&nbsp;Verónica Borja Macías ,&nbsp;José Ramón Enrique Arrazola Ramírez\",\"doi\":\"10.1016/j.jal.2016.02.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In <span>[25]</span> Priest developed the da Costa logic (<strong>daC</strong>); this is a paraconsistent logic which is also a co-intuitionistic logic that contains the logic <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>ω</mi></mrow></msub></math></span>. Due to its interesting properties it has been studied by Castiglioni, Ertola and Ferguson, and some remarkable results about it and its extensions are shown in <span>[8]</span>, <span>[11]</span>. In the present article we continue the study of <strong>daC</strong>, we prove that a restricted Hilbert system for <strong>daC</strong>, named <em>DC</em>, satisfies certain properties that help us show that this logic is not a maximal paraconsistent system. We also study an extension of <strong>daC</strong> called <span><math><mi>P</mi><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and we give different characterizations of it. Finally we compare <strong>daC</strong> and <span><math><mi>P</mi><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> with several paraconsistent logics.</p></div>\",\"PeriodicalId\":54881,\"journal\":{\"name\":\"Journal of Applied Logic\",\"volume\":\"16 \",\"pages\":\"Pages 111-127\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jal.2016.02.004\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570868316000185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Logic","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570868316000185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 8

摘要

1996年,Priest开发了da Costa逻辑(daC);这是一个副一致逻辑,也是一个包含逻辑Cω的共同直觉逻辑。由于其有趣的性质,Castiglioni, Ertola和Ferguson对其进行了研究,并在[8],[11]中给出了一些关于它及其扩展的显著结果。在本文中,我们继续研究daC,我们证明了daC的一个受限Hilbert系统,命名为DC,满足一些性质,这些性质帮助我们证明了这个逻辑不是一个极大副相容系统。我们还研究了daC的扩展,称为PH1,并给出了它的不同表征。最后,我们比较了daC和PH1与几种副一致逻辑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Revisiting da Costa logic

In [25] Priest developed the da Costa logic (daC); this is a paraconsistent logic which is also a co-intuitionistic logic that contains the logic Cω. Due to its interesting properties it has been studied by Castiglioni, Ertola and Ferguson, and some remarkable results about it and its extensions are shown in [8], [11]. In the present article we continue the study of daC, we prove that a restricted Hilbert system for daC, named DC, satisfies certain properties that help us show that this logic is not a maximal paraconsistent system. We also study an extension of daC called PH1 and we give different characterizations of it. Finally we compare daC and PH1 with several paraconsistent logics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Logic
Journal of Applied Logic COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
1.13
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Cessation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信