能被代表的偏序集

Q1 Mathematics
Rob Egrot
{"title":"能被代表的偏序集","authors":"Rob Egrot","doi":"10.1016/j.jal.2016.03.003","DOIUrl":null,"url":null,"abstract":"<div><p>A poset is representable if it can be embedded in a field of sets in such a way that existing finite meets and joins become intersections and unions respectively (we say finite meets and joins are preserved). More generally, for cardinals <em>α</em> and <em>β</em> a poset is said to be <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo></math></span>-representable if an embedding into a field of sets exists that preserves meets of sets smaller than <em>α</em> and joins of sets smaller than <em>β</em>. We show using an ultraproduct/ultraroot argument that when <span><math><mn>2</mn><mo>≤</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>≤</mo><mi>ω</mi></math></span> the class of <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo></math></span>-representable posets is elementary, but does not have a finite axiomatization in the case where either <em>α</em> or <span><math><mi>β</mi><mo>=</mo><mi>ω</mi></math></span>. We also show that the classes of posets with representations preserving either countable or <em>all</em> meets and joins are pseudoelementary.</p></div>","PeriodicalId":54881,"journal":{"name":"Journal of Applied Logic","volume":"16 ","pages":"Pages 60-71"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jal.2016.03.003","citationCount":"7","resultStr":"{\"title\":\"Representable posets\",\"authors\":\"Rob Egrot\",\"doi\":\"10.1016/j.jal.2016.03.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A poset is representable if it can be embedded in a field of sets in such a way that existing finite meets and joins become intersections and unions respectively (we say finite meets and joins are preserved). More generally, for cardinals <em>α</em> and <em>β</em> a poset is said to be <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo></math></span>-representable if an embedding into a field of sets exists that preserves meets of sets smaller than <em>α</em> and joins of sets smaller than <em>β</em>. We show using an ultraproduct/ultraroot argument that when <span><math><mn>2</mn><mo>≤</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>≤</mo><mi>ω</mi></math></span> the class of <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo></math></span>-representable posets is elementary, but does not have a finite axiomatization in the case where either <em>α</em> or <span><math><mi>β</mi><mo>=</mo><mi>ω</mi></math></span>. We also show that the classes of posets with representations preserving either countable or <em>all</em> meets and joins are pseudoelementary.</p></div>\",\"PeriodicalId\":54881,\"journal\":{\"name\":\"Journal of Applied Logic\",\"volume\":\"16 \",\"pages\":\"Pages 60-71\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jal.2016.03.003\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570868316300106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Logic","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570868316300106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 7

摘要

一个偏序集是可表示的,如果它能以这样一种方式嵌入到集合域中,即现有的有限相遇和连接分别成为交和并(我们说有限相遇和连接是保留的)。更一般地说,对于基数α和β,一个偏序集被称为(α,β)-可表示,如果一个嵌入到集合的域存在,它保留小于α的集合的满足和小于β的集合的连接。利用超积/超根论证证明了当2≤α,β≤ω时,(α,β)可表示的偏集是初等的,但在α或β=ω的情况下不具有有限公理化性。我们还证明了具有保留可数或所有满足和连接的表示的偏序集类是伪初等的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Representable posets

A poset is representable if it can be embedded in a field of sets in such a way that existing finite meets and joins become intersections and unions respectively (we say finite meets and joins are preserved). More generally, for cardinals α and β a poset is said to be (α,β)-representable if an embedding into a field of sets exists that preserves meets of sets smaller than α and joins of sets smaller than β. We show using an ultraproduct/ultraroot argument that when 2α,βω the class of (α,β)-representable posets is elementary, but does not have a finite axiomatization in the case where either α or β=ω. We also show that the classes of posets with representations preserving either countable or all meets and joins are pseudoelementary.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Logic
Journal of Applied Logic COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
1.13
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Cessation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信