在所有超实数集合中关于可忽略性和接近性的推理

Q1 Mathematics
Philippe Balbiani
{"title":"在所有超实数集合中关于可忽略性和接近性的推理","authors":"Philippe Balbiani","doi":"10.1016/j.jal.2016.04.002","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the binary relations of negligibility, comparability and proximity in the set of all hyperreals. Associating with negligibility, comparability and proximity the binary predicates <em>N</em>, <em>C</em> and <em>P</em> and the connectives <span><math><mo>[</mo><mi>N</mi><mo>]</mo></math></span>, <span><math><mo>[</mo><mi>C</mi><mo>]</mo></math></span> and <span><math><mo>[</mo><mi>P</mi><mo>]</mo></math></span>, we consider a first-order theory based on these predicates and a modal logic based on these connectives. We investigate the axiomatization/completeness and the decidability/complexity of this first-order theory and this modal logic.</p></div>","PeriodicalId":54881,"journal":{"name":"Journal of Applied Logic","volume":"16 ","pages":"Pages 14-36"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jal.2016.04.002","citationCount":"3","resultStr":"{\"title\":\"Reasoning about negligibility and proximity in the set of all hyperreals\",\"authors\":\"Philippe Balbiani\",\"doi\":\"10.1016/j.jal.2016.04.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the binary relations of negligibility, comparability and proximity in the set of all hyperreals. Associating with negligibility, comparability and proximity the binary predicates <em>N</em>, <em>C</em> and <em>P</em> and the connectives <span><math><mo>[</mo><mi>N</mi><mo>]</mo></math></span>, <span><math><mo>[</mo><mi>C</mi><mo>]</mo></math></span> and <span><math><mo>[</mo><mi>P</mi><mo>]</mo></math></span>, we consider a first-order theory based on these predicates and a modal logic based on these connectives. We investigate the axiomatization/completeness and the decidability/complexity of this first-order theory and this modal logic.</p></div>\",\"PeriodicalId\":54881,\"journal\":{\"name\":\"Journal of Applied Logic\",\"volume\":\"16 \",\"pages\":\"Pages 14-36\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jal.2016.04.002\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S157086831630012X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Logic","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S157086831630012X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

摘要

研究了所有超实数集合中可忽略性、可比性和接近性的二元关系。结合二元谓词N、C、P和连接词[N]、[C]、[P]的可忽略性、可比性和接近性,我们考虑了基于这些谓词的一阶理论和基于这些连接词的模态逻辑。我们研究了这种一阶理论和这种模态逻辑的公理化/完备性和可决性/复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reasoning about negligibility and proximity in the set of all hyperreals

We consider the binary relations of negligibility, comparability and proximity in the set of all hyperreals. Associating with negligibility, comparability and proximity the binary predicates N, C and P and the connectives [N], [C] and [P], we consider a first-order theory based on these predicates and a modal logic based on these connectives. We investigate the axiomatization/completeness and the decidability/complexity of this first-order theory and this modal logic.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Logic
Journal of Applied Logic COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
1.13
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Cessation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信