{"title":"离散重心问题的一种列生成方法","authors":"Steffen Borgwardt , Stephan Patterson","doi":"10.1016/j.disopt.2021.100674","DOIUrl":null,"url":null,"abstract":"<div><p><span>The discrete Wasserstein barycenter<span> problem is a minimum-cost mass transport problem for a set of discrete probability measures. Although an exact barycenter is computable through linear programming, the underlying linear program can be extremely large. For worst-case input, a best known linear programming formulation is exponential in the number of variables, but has a low number of constraints, making it an interesting candidate for </span></span>column generation.</p><p>In this paper, we devise and study two column generation strategies: a natural one based on a simplified computation of reduced costs, and one through a Dantzig–Wolfe decomposition. For the latter, we produce efficiently solvable subproblems, namely, a pricing problem in the form of a classical transportation problem. The two strategies begin with an efficient computation of an initial feasible solution. While the structure of the constraints leads to the computation of the reduced costs of all remaining variables for setup, both approaches may outperform a computation using the full program in speed, and dramatically so in memory requirement. In our computational experiments, we exhibit that, depending on the input, either strategy can become a best choice.</p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A column generation approach to the discrete barycenter problem\",\"authors\":\"Steffen Borgwardt , Stephan Patterson\",\"doi\":\"10.1016/j.disopt.2021.100674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>The discrete Wasserstein barycenter<span> problem is a minimum-cost mass transport problem for a set of discrete probability measures. Although an exact barycenter is computable through linear programming, the underlying linear program can be extremely large. For worst-case input, a best known linear programming formulation is exponential in the number of variables, but has a low number of constraints, making it an interesting candidate for </span></span>column generation.</p><p>In this paper, we devise and study two column generation strategies: a natural one based on a simplified computation of reduced costs, and one through a Dantzig–Wolfe decomposition. For the latter, we produce efficiently solvable subproblems, namely, a pricing problem in the form of a classical transportation problem. The two strategies begin with an efficient computation of an initial feasible solution. While the structure of the constraints leads to the computation of the reduced costs of all remaining variables for setup, both approaches may outperform a computation using the full program in speed, and dramatically so in memory requirement. In our computational experiments, we exhibit that, depending on the input, either strategy can become a best choice.</p></div>\",\"PeriodicalId\":50571,\"journal\":{\"name\":\"Discrete Optimization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572528621000530\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Optimization","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572528621000530","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A column generation approach to the discrete barycenter problem
The discrete Wasserstein barycenter problem is a minimum-cost mass transport problem for a set of discrete probability measures. Although an exact barycenter is computable through linear programming, the underlying linear program can be extremely large. For worst-case input, a best known linear programming formulation is exponential in the number of variables, but has a low number of constraints, making it an interesting candidate for column generation.
In this paper, we devise and study two column generation strategies: a natural one based on a simplified computation of reduced costs, and one through a Dantzig–Wolfe decomposition. For the latter, we produce efficiently solvable subproblems, namely, a pricing problem in the form of a classical transportation problem. The two strategies begin with an efficient computation of an initial feasible solution. While the structure of the constraints leads to the computation of the reduced costs of all remaining variables for setup, both approaches may outperform a computation using the full program in speed, and dramatically so in memory requirement. In our computational experiments, we exhibit that, depending on the input, either strategy can become a best choice.
期刊介绍:
Discrete Optimization publishes research papers on the mathematical, computational and applied aspects of all areas of integer programming and combinatorial optimization. In addition to reports on mathematical results pertinent to discrete optimization, the journal welcomes submissions on algorithmic developments, computational experiments, and novel applications (in particular, large-scale and real-time applications). The journal also publishes clearly labelled surveys, reviews, short notes, and open problems. Manuscripts submitted for possible publication to Discrete Optimization should report on original research, should not have been previously published, and should not be under consideration for publication by any other journal.