基于量变分原理的超导轴对称有限元——ⅰ。配方

James J. Schuler, Carlos A. Felippa
{"title":"基于量变分原理的超导轴对称有限元——ⅰ。配方","authors":"James J. Schuler,&nbsp;Carlos A. Felippa","doi":"10.1016/0956-0521(94)90001-9","DOIUrl":null,"url":null,"abstract":"<div><p>The present work is part of a research program for the numerical simulation of electromagnetic (EM) fields within conventional Ginzburg-Landau (GL) superconductors. The final goal of this research is to formulate, develop and validate finite element (FE) models that can accurately capture electromagnetic, thermal and material phase changes in a superconductor. The formulations presented here are for a time-independent Ginzburg-Landau superconductor and are derived from a potential-based variational principle.</p><p>In Part I of this paper, we develop an appropriate variational formulation of time-independent superconductivity for the general three-dimensional case and specialize it to the one-dimensional case. Also developed are expressions for the material-dependent parameters α and β of GL theory and their dependence upon the temperature <span><math><mtext>T</mtext></math></span>. The one-dimensional formulation is then discretized for finite element purposes and the first variation of these equations is obtained. The resultant Euler equations contain nonlinear terms in the primary variables. To solve these equations, an incremental-iterative solution method is used. Expressions for the internal force vector, external force vector, loading vector and tangent stiffness matrix are therefore developed for use with the solution procedure.</p></div>","PeriodicalId":100325,"journal":{"name":"Computing Systems in Engineering","volume":"5 3","pages":"Pages 215-225"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0956-0521(94)90001-9","citationCount":"5","resultStr":"{\"title\":\"Superconducting axisymmetric finite elements based on a gauged potential variational principle—I. Formulation\",\"authors\":\"James J. Schuler,&nbsp;Carlos A. Felippa\",\"doi\":\"10.1016/0956-0521(94)90001-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The present work is part of a research program for the numerical simulation of electromagnetic (EM) fields within conventional Ginzburg-Landau (GL) superconductors. The final goal of this research is to formulate, develop and validate finite element (FE) models that can accurately capture electromagnetic, thermal and material phase changes in a superconductor. The formulations presented here are for a time-independent Ginzburg-Landau superconductor and are derived from a potential-based variational principle.</p><p>In Part I of this paper, we develop an appropriate variational formulation of time-independent superconductivity for the general three-dimensional case and specialize it to the one-dimensional case. Also developed are expressions for the material-dependent parameters α and β of GL theory and their dependence upon the temperature <span><math><mtext>T</mtext></math></span>. The one-dimensional formulation is then discretized for finite element purposes and the first variation of these equations is obtained. The resultant Euler equations contain nonlinear terms in the primary variables. To solve these equations, an incremental-iterative solution method is used. Expressions for the internal force vector, external force vector, loading vector and tangent stiffness matrix are therefore developed for use with the solution procedure.</p></div>\",\"PeriodicalId\":100325,\"journal\":{\"name\":\"Computing Systems in Engineering\",\"volume\":\"5 3\",\"pages\":\"Pages 215-225\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0956-0521(94)90001-9\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computing Systems in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0956052194900019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing Systems in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0956052194900019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本工作是常规金兹堡-朗道(GL)超导体电磁场数值模拟研究项目的一部分。本研究的最终目标是制定、开发和验证有限元(FE)模型,以准确捕获超导体中的电磁、热和材料相变。这里给出的公式是针对时间无关的金兹堡-朗道超导体的,是从基于电位的变分原理推导出来的。在本文的第一部分中,我们发展了一般三维情况下时间无关超导性的适当变分公式,并将其专门用于一维情况。还推导了GL理论中与材料相关的参数α和β及其与温度t的关系的表达式。然后将一维公式离散化以用于有限元目的,并得到了这些方程的第一次变分。所得的欧拉方程在主要变量中包含非线性项。为了求解这些方程,采用了增量迭代解法。表达式的内力矢量,外力矢量,载荷矢量和切刚度矩阵,因此开发使用的解决程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Superconducting axisymmetric finite elements based on a gauged potential variational principle—I. Formulation

The present work is part of a research program for the numerical simulation of electromagnetic (EM) fields within conventional Ginzburg-Landau (GL) superconductors. The final goal of this research is to formulate, develop and validate finite element (FE) models that can accurately capture electromagnetic, thermal and material phase changes in a superconductor. The formulations presented here are for a time-independent Ginzburg-Landau superconductor and are derived from a potential-based variational principle.

In Part I of this paper, we develop an appropriate variational formulation of time-independent superconductivity for the general three-dimensional case and specialize it to the one-dimensional case. Also developed are expressions for the material-dependent parameters α and β of GL theory and their dependence upon the temperature T. The one-dimensional formulation is then discretized for finite element purposes and the first variation of these equations is obtained. The resultant Euler equations contain nonlinear terms in the primary variables. To solve these equations, an incremental-iterative solution method is used. Expressions for the internal force vector, external force vector, loading vector and tangent stiffness matrix are therefore developed for use with the solution procedure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信