通过机器学习进行短期比特币市场预测

Q1 Mathematics
Patrick Jaquart, David Dann, Christof Weinhardt
{"title":"通过机器学习进行短期比特币市场预测","authors":"Patrick Jaquart,&nbsp;David Dann,&nbsp;Christof Weinhardt","doi":"10.1016/j.jfds.2021.03.001","DOIUrl":null,"url":null,"abstract":"<div><p>We analyze the predictability of the bitcoin market across prediction horizons ranging from 1 to 60 min. In doing so, we test various machine learning models and find that, while all models outperform a random classifier, recurrent neural networks and gradient boosting classifiers are especially well-suited for the examined prediction tasks. We use a comprehensive feature set, including technical, blockchain-based, sentiment-/interest-based, and asset-based features. Our results show that technical features remain most relevant for most methods, followed by selected blockchain-based and sentiment-/interest-based features. Additionally, we find that predictability increases for longer prediction horizons. Although a quantile-based long-short trading strategy generates monthly returns of up to 39% before transaction costs, it leads to negative returns after taking transaction costs into account due to the particularly short holding periods.</p></div>","PeriodicalId":36340,"journal":{"name":"Journal of Finance and Data Science","volume":"7 ","pages":"Pages 45-66"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jfds.2021.03.001","citationCount":"64","resultStr":"{\"title\":\"Short-term bitcoin market prediction via machine learning\",\"authors\":\"Patrick Jaquart,&nbsp;David Dann,&nbsp;Christof Weinhardt\",\"doi\":\"10.1016/j.jfds.2021.03.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We analyze the predictability of the bitcoin market across prediction horizons ranging from 1 to 60 min. In doing so, we test various machine learning models and find that, while all models outperform a random classifier, recurrent neural networks and gradient boosting classifiers are especially well-suited for the examined prediction tasks. We use a comprehensive feature set, including technical, blockchain-based, sentiment-/interest-based, and asset-based features. Our results show that technical features remain most relevant for most methods, followed by selected blockchain-based and sentiment-/interest-based features. Additionally, we find that predictability increases for longer prediction horizons. Although a quantile-based long-short trading strategy generates monthly returns of up to 39% before transaction costs, it leads to negative returns after taking transaction costs into account due to the particularly short holding periods.</p></div>\",\"PeriodicalId\":36340,\"journal\":{\"name\":\"Journal of Finance and Data Science\",\"volume\":\"7 \",\"pages\":\"Pages 45-66\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jfds.2021.03.001\",\"citationCount\":\"64\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Finance and Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405918821000027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Finance and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405918821000027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 64

摘要

我们分析了比特币市场在1到60分钟的预测范围内的可预测性。在此过程中,我们测试了各种机器学习模型,发现虽然所有模型都优于随机分类器,但循环神经网络和梯度增强分类器特别适合于所检查的预测任务。我们使用全面的功能集,包括技术,基于区块链,基于情感/兴趣和基于资产的功能。我们的研究结果表明,技术特征仍然与大多数方法最相关,其次是选定的基于区块链和基于情感/兴趣的特征。此外,我们发现预测范围越长,可预测性越高。尽管基于分位数的多空交易策略在扣除交易成本前的月回报率高达39%,但由于持有时间特别短,考虑交易成本后的月回报率为负。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Short-term bitcoin market prediction via machine learning

We analyze the predictability of the bitcoin market across prediction horizons ranging from 1 to 60 min. In doing so, we test various machine learning models and find that, while all models outperform a random classifier, recurrent neural networks and gradient boosting classifiers are especially well-suited for the examined prediction tasks. We use a comprehensive feature set, including technical, blockchain-based, sentiment-/interest-based, and asset-based features. Our results show that technical features remain most relevant for most methods, followed by selected blockchain-based and sentiment-/interest-based features. Additionally, we find that predictability increases for longer prediction horizons. Although a quantile-based long-short trading strategy generates monthly returns of up to 39% before transaction costs, it leads to negative returns after taking transaction costs into account due to the particularly short holding periods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Finance and Data Science
Journal of Finance and Data Science Mathematics-Statistics and Probability
CiteScore
3.90
自引率
0.00%
发文量
15
审稿时长
30 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信