绝热开关法分析:基础与应用

Rex T. Skodje, John R. Cary
{"title":"绝热开关法分析:基础与应用","authors":"Rex T. Skodje,&nbsp;John R. Cary","doi":"10.1016/0167-7977(88)90003-2","DOIUrl":null,"url":null,"abstract":"<div><p>The adiabatic switching method is characterized through a discussion of formal adiabatic theory and through a variety of numerical examples. Adiabatic invariance theory for one degree of freedom problems is developed in detail. This provides a formal basis for the analysis of various aspects of the method. The role of: 1) the switching function, 2) the zero order reference Hamiltonian, and 3) ensemble averaging of results are addressed with more rigour function than in previous discussions. The use of adiabatic switching to implement EBK quantization is illustrated by a treatment of the Henon-Heiles system. It is shown how adiabatic switching is useful for periodic orbit determination and adiabatic propagation of semiclassical eigenstates. The behavior of the conjugate angle variables in near adiabatic dynamics is formally and numerically explored. The theory of adiabatic separatrix crossing is developed and several aspects of the theory are numerically tested for a time-dependent quartic double well.</p></div>","PeriodicalId":100318,"journal":{"name":"Computer Physics Reports","volume":"8 5","pages":"Pages 221-292"},"PeriodicalIF":0.0000,"publicationDate":"1988-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0167-7977(88)90003-2","citationCount":"25","resultStr":"{\"title\":\"An analysis of the adiabatic switching method: Foundations and applications\",\"authors\":\"Rex T. Skodje,&nbsp;John R. Cary\",\"doi\":\"10.1016/0167-7977(88)90003-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The adiabatic switching method is characterized through a discussion of formal adiabatic theory and through a variety of numerical examples. Adiabatic invariance theory for one degree of freedom problems is developed in detail. This provides a formal basis for the analysis of various aspects of the method. The role of: 1) the switching function, 2) the zero order reference Hamiltonian, and 3) ensemble averaging of results are addressed with more rigour function than in previous discussions. The use of adiabatic switching to implement EBK quantization is illustrated by a treatment of the Henon-Heiles system. It is shown how adiabatic switching is useful for periodic orbit determination and adiabatic propagation of semiclassical eigenstates. The behavior of the conjugate angle variables in near adiabatic dynamics is formally and numerically explored. The theory of adiabatic separatrix crossing is developed and several aspects of the theory are numerically tested for a time-dependent quartic double well.</p></div>\",\"PeriodicalId\":100318,\"journal\":{\"name\":\"Computer Physics Reports\",\"volume\":\"8 5\",\"pages\":\"Pages 221-292\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0167-7977(88)90003-2\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Physics Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0167797788900032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0167797788900032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

通过对形式绝热理论的讨论和各种数值算例,对绝热开关法进行了表征。详细地发展了一自由度问题的绝热不变性理论。这为分析该方法的各个方面提供了正式的基础。与之前的讨论相比,本文更严格地讨论了1)切换函数,2)零阶参考哈密顿量和3)结果的集成平均的作用。通过对Henon-Heiles系统的处理说明了使用绝热开关来实现EBK量化。证明了绝热开关对半经典本征态的周期轨道确定和绝热传播是有用的。对近绝热动力学中共轭角变量的行为进行了形式化和数值化的探讨。建立了绝热分离矩阵交叉理论,并对时变四次双井的若干方面进行了数值验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An analysis of the adiabatic switching method: Foundations and applications

The adiabatic switching method is characterized through a discussion of formal adiabatic theory and through a variety of numerical examples. Adiabatic invariance theory for one degree of freedom problems is developed in detail. This provides a formal basis for the analysis of various aspects of the method. The role of: 1) the switching function, 2) the zero order reference Hamiltonian, and 3) ensemble averaging of results are addressed with more rigour function than in previous discussions. The use of adiabatic switching to implement EBK quantization is illustrated by a treatment of the Henon-Heiles system. It is shown how adiabatic switching is useful for periodic orbit determination and adiabatic propagation of semiclassical eigenstates. The behavior of the conjugate angle variables in near adiabatic dynamics is formally and numerically explored. The theory of adiabatic separatrix crossing is developed and several aspects of the theory are numerically tested for a time-dependent quartic double well.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信