三维次拉普拉斯算子的点交互

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Riccardo Adami , Ugo Boscain , Valentina Franceschi , Dario Prandi
{"title":"三维次拉普拉斯算子的点交互","authors":"Riccardo Adami ,&nbsp;Ugo Boscain ,&nbsp;Valentina Franceschi ,&nbsp;Dario Prandi","doi":"10.1016/j.anihpc.2020.10.007","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we show that, for a sub-Laplacian Δ on a 3-dimensional manifold <em>M</em>, no point interaction centered at a point <span><math><msub><mrow><mi>q</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mi>M</mi></math></span> exists. When <em>M</em> is complete w.r.t. the associated sub-Riemannian structure, this means that Δ acting on <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><mo>(</mo><mi>M</mi><mo>∖</mo><mo>{</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>}</mo><mo>)</mo></math></span> is essentially self-adjoint in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>M</mi><mo>)</mo></math></span><span>. A particular example is the standard sub-Laplacian on the Heisenberg group<span>. This is in stark contrast with what happens in a Riemannian manifold </span></span><em>N</em>, whose associated Laplace-Beltrami operator acting on <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><mo>(</mo><mi>N</mi><mo>∖</mo><mo>{</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>}</mo><mo>)</mo></math></span> is never essentially self-adjoint in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>N</mi><mo>)</mo></math></span>, if <span><math><mi>dim</mi><mo>⁡</mo><mi>N</mi><mo>≤</mo><mn>3</mn></math></span><span><span>. We then apply this result to the Schrödinger evolution of a thin molecule, i.e., with a vanishing </span>moment of inertia, rotating around its center of mass.</span></p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.anihpc.2020.10.007","citationCount":"7","resultStr":"{\"title\":\"Point interactions for 3D sub-Laplacians\",\"authors\":\"Riccardo Adami ,&nbsp;Ugo Boscain ,&nbsp;Valentina Franceschi ,&nbsp;Dario Prandi\",\"doi\":\"10.1016/j.anihpc.2020.10.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we show that, for a sub-Laplacian Δ on a 3-dimensional manifold <em>M</em>, no point interaction centered at a point <span><math><msub><mrow><mi>q</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mi>M</mi></math></span> exists. When <em>M</em> is complete w.r.t. the associated sub-Riemannian structure, this means that Δ acting on <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><mo>(</mo><mi>M</mi><mo>∖</mo><mo>{</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>}</mo><mo>)</mo></math></span> is essentially self-adjoint in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>M</mi><mo>)</mo></math></span><span>. A particular example is the standard sub-Laplacian on the Heisenberg group<span>. This is in stark contrast with what happens in a Riemannian manifold </span></span><em>N</em>, whose associated Laplace-Beltrami operator acting on <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><mo>(</mo><mi>N</mi><mo>∖</mo><mo>{</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>}</mo><mo>)</mo></math></span> is never essentially self-adjoint in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>N</mi><mo>)</mo></math></span>, if <span><math><mi>dim</mi><mo>⁡</mo><mi>N</mi><mo>≤</mo><mn>3</mn></math></span><span><span>. We then apply this result to the Schrödinger evolution of a thin molecule, i.e., with a vanishing </span>moment of inertia, rotating around its center of mass.</span></p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.anihpc.2020.10.007\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0294144920301128\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0294144920301128","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7

摘要

本文证明了三维流形M上的子拉普拉斯算子Δ不存在以点q0∈M为中心的点相互作用。当M与相关的子黎曼结构完全时,这意味着作用于C0∞(M∈{q0})上的Δ在L2(M)中本质上是自伴随的。一个特殊的例子是海森堡群上的标准次拉普拉斯算子。这与在黎曼流形N中发生的情况形成鲜明对比,如果dim (N)≤3,则其相关的拉普拉斯-贝尔特拉米算子作用于C0∞(N∈{q0})上,在L2(N)中从不本质上自伴随。然后,我们将这个结果应用于薄分子的Schrödinger演化,即,具有消失的惯性矩,围绕其质心旋转。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Point interactions for 3D sub-Laplacians

In this paper we show that, for a sub-Laplacian Δ on a 3-dimensional manifold M, no point interaction centered at a point q0M exists. When M is complete w.r.t. the associated sub-Riemannian structure, this means that Δ acting on C0(M{q0}) is essentially self-adjoint in L2(M). A particular example is the standard sub-Laplacian on the Heisenberg group. This is in stark contrast with what happens in a Riemannian manifold N, whose associated Laplace-Beltrami operator acting on C0(N{q0}) is never essentially self-adjoint in L2(N), if dimN3. We then apply this result to the Schrödinger evolution of a thin molecule, i.e., with a vanishing moment of inertia, rotating around its center of mass.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信