线性和非线性MHD模拟的算法和软件

Wolfgang Kerner
{"title":"线性和非线性MHD模拟的算法和软件","authors":"Wolfgang Kerner","doi":"10.1016/0167-7977(90)90009-U","DOIUrl":null,"url":null,"abstract":"<div><p>The very different spatial and temporal scales inherent in the dissipative MHD model impose severe requirements on the numerical simulations, which have to be met by appropriate methods. The numerical approximation discussed is based on the finite-element method, where space-time discretization and semi-discretization are included. Specific advanced methods, such as adaptive mesh, multigrid, normal-mode analysis and semi-implicit schemes are presented. Important features of present and future supercomputers are being addressed.</p></div>","PeriodicalId":100318,"journal":{"name":"Computer Physics Reports","volume":"12 4","pages":"Pages 135-175"},"PeriodicalIF":0.0000,"publicationDate":"1990-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0167-7977(90)90009-U","citationCount":"2","resultStr":"{\"title\":\"Algorithms and software for linear and nonlinear MHD simulations\",\"authors\":\"Wolfgang Kerner\",\"doi\":\"10.1016/0167-7977(90)90009-U\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The very different spatial and temporal scales inherent in the dissipative MHD model impose severe requirements on the numerical simulations, which have to be met by appropriate methods. The numerical approximation discussed is based on the finite-element method, where space-time discretization and semi-discretization are included. Specific advanced methods, such as adaptive mesh, multigrid, normal-mode analysis and semi-implicit schemes are presented. Important features of present and future supercomputers are being addressed.</p></div>\",\"PeriodicalId\":100318,\"journal\":{\"name\":\"Computer Physics Reports\",\"volume\":\"12 4\",\"pages\":\"Pages 135-175\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0167-7977(90)90009-U\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Physics Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/016779779090009U\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/016779779090009U","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

耗散MHD模式所固有的不同时空尺度对数值模拟提出了严格的要求,必须采用适当的方法来满足这些要求。所讨论的数值近似是基于有限元方法,其中包括时空离散和半离散。提出了自适应网格法、多网格法、正态分析法和半隐式方法。目前和未来超级计算机的重要特性正在得到解决。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algorithms and software for linear and nonlinear MHD simulations

The very different spatial and temporal scales inherent in the dissipative MHD model impose severe requirements on the numerical simulations, which have to be met by appropriate methods. The numerical approximation discussed is based on the finite-element method, where space-time discretization and semi-discretization are included. Specific advanced methods, such as adaptive mesh, multigrid, normal-mode analysis and semi-implicit schemes are presented. Important features of present and future supercomputers are being addressed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信