Schrödinger方程数值解的p稳定八阶代数方法

A. Konguetsof, T.E. Simos
{"title":"Schrödinger方程数值解的p稳定八阶代数方法","authors":"A. Konguetsof,&nbsp;T.E. Simos","doi":"10.1016/S0097-8485(01)00085-7","DOIUrl":null,"url":null,"abstract":"<div><p>A P-stable method of algebraic order eight for the approximate numerical integration of the Schrödinger equation is developed in this paper. Since the method is P-stable (i.e. its interval of periodicity is equal to (0, ∞)), large step sizes for the numerical integration can be used. Based on this new method and on a sixth algebraic order P-stable method developed by Simos (Phys. Scripta 55 (1997) 644–650), a new variable step method is obtained. Numerical results presented for the phase-shift problem of the radial Schrödinger equation and for the coupled differential equations arising from the Schrödinger equation show the efficiency of the developed method.</p></div>","PeriodicalId":79331,"journal":{"name":"Computers & chemistry","volume":"26 2","pages":"Pages 105-111"},"PeriodicalIF":0.0000,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0097-8485(01)00085-7","citationCount":"7","resultStr":"{\"title\":\"P-stable eighth algebraic order methods for the numerical solution of the Schrödinger equation\",\"authors\":\"A. Konguetsof,&nbsp;T.E. Simos\",\"doi\":\"10.1016/S0097-8485(01)00085-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A P-stable method of algebraic order eight for the approximate numerical integration of the Schrödinger equation is developed in this paper. Since the method is P-stable (i.e. its interval of periodicity is equal to (0, ∞)), large step sizes for the numerical integration can be used. Based on this new method and on a sixth algebraic order P-stable method developed by Simos (Phys. Scripta 55 (1997) 644–650), a new variable step method is obtained. Numerical results presented for the phase-shift problem of the radial Schrödinger equation and for the coupled differential equations arising from the Schrödinger equation show the efficiency of the developed method.</p></div>\",\"PeriodicalId\":79331,\"journal\":{\"name\":\"Computers & chemistry\",\"volume\":\"26 2\",\"pages\":\"Pages 105-111\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0097-8485(01)00085-7\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097848501000857\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097848501000857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文提出了求解Schrödinger方程近似数值积分的8阶p稳定方法。由于该方法是p稳定的(即其周期区间等于(0,∞)),因此可以使用较大的步长进行数值积分。基于这种新方法和Simos (Phys)提出的六阶p稳定方法。Scripta 55(1997) 644-650),得到了一种新的变步长法。对径向Schrödinger方程的相移问题和由Schrödinger方程引起的耦合微分方程的数值计算结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
P-stable eighth algebraic order methods for the numerical solution of the Schrödinger equation

A P-stable method of algebraic order eight for the approximate numerical integration of the Schrödinger equation is developed in this paper. Since the method is P-stable (i.e. its interval of periodicity is equal to (0, ∞)), large step sizes for the numerical integration can be used. Based on this new method and on a sixth algebraic order P-stable method developed by Simos (Phys. Scripta 55 (1997) 644–650), a new variable step method is obtained. Numerical results presented for the phase-shift problem of the radial Schrödinger equation and for the coupled differential equations arising from the Schrödinger equation show the efficiency of the developed method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信