预测蛋白质亚细胞定位的人工神经网络模型

Yu-Dong Cai , Xiao-Jun Liu , Kuo-Chen Chou
{"title":"预测蛋白质亚细胞定位的人工神经网络模型","authors":"Yu-Dong Cai ,&nbsp;Xiao-Jun Liu ,&nbsp;Kuo-Chen Chou","doi":"10.1016/S0097-8485(01)00106-1","DOIUrl":null,"url":null,"abstract":"<div><p>The function of a protein is closely correlated to its subcellular location. Is it possible to utilize a bioinformatics method to predict the protein subcellular location? To explore this problem, proteins are classified into 12 groups (Protein Eng. 12 (1999) 107–118) according to their subcellular location: (1) chloroplast, (2) cytoplasm, (3) cytoskeleton, (4) endoplasmic reticulum, (5) extracellular, (6) Golgi apparatus, (7) lysosome, (8) mitochondria, (9) nucleus, (10) peroxisome, (11) plasma membrane and (12) vacuole. In this paper, the neural network method was proposed to predict the subcellular location of a protein according to its amino acid composition. Results obtained through self-consistency, cross-validation and independent dataset tests are quite high. Accordingly, the present method can serve as a complement tool for the existing prediction methods in this area.</p></div>","PeriodicalId":79331,"journal":{"name":"Computers & chemistry","volume":"26 2","pages":"Pages 179-182"},"PeriodicalIF":0.0000,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0097-8485(01)00106-1","citationCount":"33","resultStr":"{\"title\":\"Artificial neural network model for predicting protein subcellular location\",\"authors\":\"Yu-Dong Cai ,&nbsp;Xiao-Jun Liu ,&nbsp;Kuo-Chen Chou\",\"doi\":\"10.1016/S0097-8485(01)00106-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The function of a protein is closely correlated to its subcellular location. Is it possible to utilize a bioinformatics method to predict the protein subcellular location? To explore this problem, proteins are classified into 12 groups (Protein Eng. 12 (1999) 107–118) according to their subcellular location: (1) chloroplast, (2) cytoplasm, (3) cytoskeleton, (4) endoplasmic reticulum, (5) extracellular, (6) Golgi apparatus, (7) lysosome, (8) mitochondria, (9) nucleus, (10) peroxisome, (11) plasma membrane and (12) vacuole. In this paper, the neural network method was proposed to predict the subcellular location of a protein according to its amino acid composition. Results obtained through self-consistency, cross-validation and independent dataset tests are quite high. Accordingly, the present method can serve as a complement tool for the existing prediction methods in this area.</p></div>\",\"PeriodicalId\":79331,\"journal\":{\"name\":\"Computers & chemistry\",\"volume\":\"26 2\",\"pages\":\"Pages 179-182\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0097-8485(01)00106-1\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097848501001061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097848501001061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

蛋白质的功能与其亚细胞位置密切相关。是否有可能利用生物信息学方法来预测蛋白质亚细胞的位置?为了探讨这个问题,蛋白质根据其亚细胞位置分为12类(Protein Eng. 12(1999) 107-118):(1)叶绿体,(2)细胞质,(3)细胞骨架,(4)内质网,(5)细胞外,(6)高尔基体,(7)溶酶体,(8)线粒体,(9)细胞核,(10)过氧化物酶体,(11)质膜,(12)液泡。本文提出了一种基于氨基酸组成的神经网络预测蛋白质亚细胞位置的方法。通过自一致性、交叉验证和独立数据集检验得到的结果相当高。因此,本方法可以作为该领域现有预测方法的补充工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial neural network model for predicting protein subcellular location

The function of a protein is closely correlated to its subcellular location. Is it possible to utilize a bioinformatics method to predict the protein subcellular location? To explore this problem, proteins are classified into 12 groups (Protein Eng. 12 (1999) 107–118) according to their subcellular location: (1) chloroplast, (2) cytoplasm, (3) cytoskeleton, (4) endoplasmic reticulum, (5) extracellular, (6) Golgi apparatus, (7) lysosome, (8) mitochondria, (9) nucleus, (10) peroxisome, (11) plasma membrane and (12) vacuole. In this paper, the neural network method was proposed to predict the subcellular location of a protein according to its amino acid composition. Results obtained through self-consistency, cross-validation and independent dataset tests are quite high. Accordingly, the present method can serve as a complement tool for the existing prediction methods in this area.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信