基于生成对抗网络的电子商务信息提取改进查询扩展

Altan Cakir , Mert Gurkan
{"title":"基于生成对抗网络的电子商务信息提取改进查询扩展","authors":"Altan Cakir ,&nbsp;Mert Gurkan","doi":"10.1016/j.mlwa.2023.100509","DOIUrl":null,"url":null,"abstract":"<div><p>This work addresses an alternative approach for query expansion (QE) using a generative adversarial network (GAN) to enhance the effectiveness of information search in e-commerce. We propose a modified QE conditional GAN (<em>m</em>QE-CGAN) framework, which resolves keywords by expanding the query with a synthetically generated query that proposes semantic information from text input. we train a sequence-to-sequence transformer model as the generator to produce keywords and use a recurrent neural network model as the discriminator to classify an adversarial output with the generator. with the <em>modified</em> CGAN framework, Various forms of semantic insights gathered from the query-document corpus are introduced to the generation process. We leverage these insights as conditions for the generator model and discuss their effectiveness for the query expansion task. our experiments demonstrate that the utilization of condition structures within the <em>m</em>QE-CGAN framework can increase the semantic similarity between generated sequences and reference documents up to nearly 10% compared to baseline models.</p></div>","PeriodicalId":74093,"journal":{"name":"Machine learning with applications","volume":"14 ","pages":"Article 100509"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666827023000622/pdfft?md5=aae23ad5c735e599f23039060a8ca4d4&pid=1-s2.0-S2666827023000622-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Modified query expansion through generative adversarial networks for information extraction in e-commerce\",\"authors\":\"Altan Cakir ,&nbsp;Mert Gurkan\",\"doi\":\"10.1016/j.mlwa.2023.100509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work addresses an alternative approach for query expansion (QE) using a generative adversarial network (GAN) to enhance the effectiveness of information search in e-commerce. We propose a modified QE conditional GAN (<em>m</em>QE-CGAN) framework, which resolves keywords by expanding the query with a synthetically generated query that proposes semantic information from text input. we train a sequence-to-sequence transformer model as the generator to produce keywords and use a recurrent neural network model as the discriminator to classify an adversarial output with the generator. with the <em>modified</em> CGAN framework, Various forms of semantic insights gathered from the query-document corpus are introduced to the generation process. We leverage these insights as conditions for the generator model and discuss their effectiveness for the query expansion task. our experiments demonstrate that the utilization of condition structures within the <em>m</em>QE-CGAN framework can increase the semantic similarity between generated sequences and reference documents up to nearly 10% compared to baseline models.</p></div>\",\"PeriodicalId\":74093,\"journal\":{\"name\":\"Machine learning with applications\",\"volume\":\"14 \",\"pages\":\"Article 100509\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666827023000622/pdfft?md5=aae23ad5c735e599f23039060a8ca4d4&pid=1-s2.0-S2666827023000622-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine learning with applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666827023000622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning with applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666827023000622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作提出了一种使用生成对抗网络(GAN)的查询扩展(QE)的替代方法,以提高电子商务中信息搜索的有效性。我们提出了一种改进的QE条件GAN (mQE-CGAN)框架,该框架通过使用从文本输入中提供语义信息的综合生成查询扩展查询来解析关键字。我们训练一个序列到序列的变压器模型作为生成关键字的生成器,并使用递归神经网络模型作为鉴别器对生成器的对抗性输出进行分类。在改进的CGAN框架中,将从查询文档语料库中收集的各种形式的语义洞察引入到生成过程中。我们利用这些见解作为生成器模型的条件,并讨论它们对查询扩展任务的有效性。我们的实验表明,与基线模型相比,在mQE-CGAN框架中使用条件结构可以将生成序列和参考文档之间的语义相似度提高近10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modified query expansion through generative adversarial networks for information extraction in e-commerce

This work addresses an alternative approach for query expansion (QE) using a generative adversarial network (GAN) to enhance the effectiveness of information search in e-commerce. We propose a modified QE conditional GAN (mQE-CGAN) framework, which resolves keywords by expanding the query with a synthetically generated query that proposes semantic information from text input. we train a sequence-to-sequence transformer model as the generator to produce keywords and use a recurrent neural network model as the discriminator to classify an adversarial output with the generator. with the modified CGAN framework, Various forms of semantic insights gathered from the query-document corpus are introduced to the generation process. We leverage these insights as conditions for the generator model and discuss their effectiveness for the query expansion task. our experiments demonstrate that the utilization of condition structures within the mQE-CGAN framework can increase the semantic similarity between generated sequences and reference documents up to nearly 10% compared to baseline models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machine learning with applications
Machine learning with applications Management Science and Operations Research, Artificial Intelligence, Computer Science Applications
自引率
0.00%
发文量
0
审稿时长
98 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信