进一步五点配合椭圆拟合

Paul L. Rosin
{"title":"进一步五点配合椭圆拟合","authors":"Paul L. Rosin","doi":"10.1006/gmip.1999.0500","DOIUrl":null,"url":null,"abstract":"<div><p>The least-squares method is the most commonly used technique for fitting an ellipse through a set of points. However, it has a low breakdown point, which means that it performs poorly in the presence of outliers. We describe various alternative methods for ellipse fitting which are more robust: the Theil–Sen, least median of squares, Hilbert curve, and minimum volume estimator approaches. Testing with synthetic data demonstrates that the least median of squares is the most suitable method in terms of accuracy and robustness.</p></div>","PeriodicalId":100591,"journal":{"name":"Graphical Models and Image Processing","volume":"61 5","pages":"Pages 245-259"},"PeriodicalIF":0.0000,"publicationDate":"1999-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1006/gmip.1999.0500","citationCount":"80","resultStr":"{\"title\":\"Further Five-Point Fit Ellipse Fitting\",\"authors\":\"Paul L. Rosin\",\"doi\":\"10.1006/gmip.1999.0500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The least-squares method is the most commonly used technique for fitting an ellipse through a set of points. However, it has a low breakdown point, which means that it performs poorly in the presence of outliers. We describe various alternative methods for ellipse fitting which are more robust: the Theil–Sen, least median of squares, Hilbert curve, and minimum volume estimator approaches. Testing with synthetic data demonstrates that the least median of squares is the most suitable method in terms of accuracy and robustness.</p></div>\",\"PeriodicalId\":100591,\"journal\":{\"name\":\"Graphical Models and Image Processing\",\"volume\":\"61 5\",\"pages\":\"Pages 245-259\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1006/gmip.1999.0500\",\"citationCount\":\"80\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphical Models and Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1077316999905002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077316999905002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 80

摘要

最小二乘法是通过一组点拟合椭圆最常用的方法。然而,它的击穿点很低,这意味着它在异常值存在时表现不佳。我们描述了各种更鲁棒的椭圆拟合替代方法:Theil-Sen,最小平方中位数,希尔伯特曲线和最小体积估计方法。综合数据的检验表明,最小二乘中值法在精度和鲁棒性方面是最合适的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Further Five-Point Fit Ellipse Fitting

The least-squares method is the most commonly used technique for fitting an ellipse through a set of points. However, it has a low breakdown point, which means that it performs poorly in the presence of outliers. We describe various alternative methods for ellipse fitting which are more robust: the Theil–Sen, least median of squares, Hilbert curve, and minimum volume estimator approaches. Testing with synthetic data demonstrates that the least median of squares is the most suitable method in terms of accuracy and robustness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信