{"title":"循环(0,1)矩阵的永久元","authors":"N. Metropolis, M.L. Stein, P.R. Stein","doi":"10.1016/S0021-9800(69)80058-X","DOIUrl":null,"url":null,"abstract":"<div><p>An efficient method is presented for evaluating the permanents <em>P<sub>n</sub><sup>k</sup></em> of cyclic (0,1) matrices of dimension <em>n</em> and common row and column sum <em>k</em>. A general method is developed for finding recurrence rules for <em>P<sub>n</sub><sup>k</sup></em> (<em>k</em> fixed); the recurrence rules are given in semiexplicit form for the range 4≤<em>k</em>≤9. A table of <em>P<sub>n</sub><sup>k</sup></em> is included for the range 4≤<em>k</em>≤9, <em>k</em>≤<em>n</em>≤80. The <em>P<sub>n</sub><sup>k</sup></em> are calculated in the form<span><span><span><math><mrow><msubsup><mi>P</mi><mi>n</mi><mo>k</mo></msubsup><mo>=</mo><mn>2</mn><mo>+</mo><mstyle><munderover><mo>∑</mo><mrow><mi>τ</mi><mo>−</mo><mn>1</mn></mrow><mrow><mo>[</mo><mstyle><mfrac><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow><mn>2</mn></mfrac></mstyle><mo>]</mo></mrow></munderover><mrow><msubsup><mi>T</mi><mi>τ</mi><mo>k</mo></msubsup><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mstyle></mrow></math></span></span></span>where the <em>T<sub>t</sub><sup>k</sup>(n)</em> satisfy recurrence rules given symbolically by the characteristic equations of certain (0, 1) matrices <em>Π<sub>r</sub><sup>k</sup></em>; the latter turn out to be identical with the <em>r</em>-th permanental compounds of certain simpler matrices <em>Π<sub>1</sub><sup>k</sup></em>. Finally, formal expressions for <em>P<sub>n</sub><sup>k</sup></em> are given which allow one to write down the solution to the generalized Ménage Problem in terms of sums over scalar products of the iterates of a set of unit vectors.</p></div>","PeriodicalId":100765,"journal":{"name":"Journal of Combinatorial Theory","volume":"7 4","pages":"Pages 291-321"},"PeriodicalIF":0.0000,"publicationDate":"1969-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0021-9800(69)80058-X","citationCount":"18","resultStr":"{\"title\":\"Permanents of cyclic (0,1) matrices\",\"authors\":\"N. Metropolis, M.L. Stein, P.R. Stein\",\"doi\":\"10.1016/S0021-9800(69)80058-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An efficient method is presented for evaluating the permanents <em>P<sub>n</sub><sup>k</sup></em> of cyclic (0,1) matrices of dimension <em>n</em> and common row and column sum <em>k</em>. A general method is developed for finding recurrence rules for <em>P<sub>n</sub><sup>k</sup></em> (<em>k</em> fixed); the recurrence rules are given in semiexplicit form for the range 4≤<em>k</em>≤9. A table of <em>P<sub>n</sub><sup>k</sup></em> is included for the range 4≤<em>k</em>≤9, <em>k</em>≤<em>n</em>≤80. The <em>P<sub>n</sub><sup>k</sup></em> are calculated in the form<span><span><span><math><mrow><msubsup><mi>P</mi><mi>n</mi><mo>k</mo></msubsup><mo>=</mo><mn>2</mn><mo>+</mo><mstyle><munderover><mo>∑</mo><mrow><mi>τ</mi><mo>−</mo><mn>1</mn></mrow><mrow><mo>[</mo><mstyle><mfrac><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow><mn>2</mn></mfrac></mstyle><mo>]</mo></mrow></munderover><mrow><msubsup><mi>T</mi><mi>τ</mi><mo>k</mo></msubsup><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mstyle></mrow></math></span></span></span>where the <em>T<sub>t</sub><sup>k</sup>(n)</em> satisfy recurrence rules given symbolically by the characteristic equations of certain (0, 1) matrices <em>Π<sub>r</sub><sup>k</sup></em>; the latter turn out to be identical with the <em>r</em>-th permanental compounds of certain simpler matrices <em>Π<sub>1</sub><sup>k</sup></em>. Finally, formal expressions for <em>P<sub>n</sub><sup>k</sup></em> are given which allow one to write down the solution to the generalized Ménage Problem in terms of sums over scalar products of the iterates of a set of unit vectors.</p></div>\",\"PeriodicalId\":100765,\"journal\":{\"name\":\"Journal of Combinatorial Theory\",\"volume\":\"7 4\",\"pages\":\"Pages 291-321\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1969-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0021-9800(69)80058-X\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002198006980058X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002198006980058X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An efficient method is presented for evaluating the permanents Pnk of cyclic (0,1) matrices of dimension n and common row and column sum k. A general method is developed for finding recurrence rules for Pnk (k fixed); the recurrence rules are given in semiexplicit form for the range 4≤k≤9. A table of Pnk is included for the range 4≤k≤9, k≤n≤80. The Pnk are calculated in the formwhere the Ttk(n) satisfy recurrence rules given symbolically by the characteristic equations of certain (0, 1) matrices Πrk; the latter turn out to be identical with the r-th permanental compounds of certain simpler matrices Π1k. Finally, formal expressions for Pnk are given which allow one to write down the solution to the generalized Ménage Problem in terms of sums over scalar products of the iterates of a set of unit vectors.