使用边界块分割快速自动生成VOP

Beung-Chan Kim, Rae-Hong Park
{"title":"使用边界块分割快速自动生成VOP","authors":"Beung-Chan Kim,&nbsp;Rae-Hong Park","doi":"10.1016/j.rti.2004.02.006","DOIUrl":null,"url":null,"abstract":"<div><p><span>With the increase of multimedia applications and content-based functionalities, efficient video coding methods are necessary. The moving picture experts group-4 (MPEG-4) provides content-based functionalities by introducing the concept of the </span>video object plane (VOP). Each frame of the input sequence is segmented into a number of arbitrarily shaped image regions or VOP's so that each VOP describes a semantically meaningful object or video content of interest.</p><p>For real-time applications of MPEG-4, a fast automatic object segmentation method<span> of video sequences is needed. We propose a fast automatic VOP generation algorithm composed of two parts: object block segmentation and boundary block segmentation. The former defines block-based object regions in a frame and the latter generates the pixel-based object mask. Block-based object region search and restriction of segmentation regions to boundary blocks reduce a computational load. Experimental results with two test sequences show the effectiveness of the proposed algorithm in terms of the visual quality of segmentation results and the computation time.</span></p></div>","PeriodicalId":101062,"journal":{"name":"Real-Time Imaging","volume":"10 2","pages":"Pages 117-125"},"PeriodicalIF":0.0000,"publicationDate":"2004-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.rti.2004.02.006","citationCount":"8","resultStr":"{\"title\":\"A fast automatic VOP generation using boundary block segmentation\",\"authors\":\"Beung-Chan Kim,&nbsp;Rae-Hong Park\",\"doi\":\"10.1016/j.rti.2004.02.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>With the increase of multimedia applications and content-based functionalities, efficient video coding methods are necessary. The moving picture experts group-4 (MPEG-4) provides content-based functionalities by introducing the concept of the </span>video object plane (VOP). Each frame of the input sequence is segmented into a number of arbitrarily shaped image regions or VOP's so that each VOP describes a semantically meaningful object or video content of interest.</p><p>For real-time applications of MPEG-4, a fast automatic object segmentation method<span> of video sequences is needed. We propose a fast automatic VOP generation algorithm composed of two parts: object block segmentation and boundary block segmentation. The former defines block-based object regions in a frame and the latter generates the pixel-based object mask. Block-based object region search and restriction of segmentation regions to boundary blocks reduce a computational load. Experimental results with two test sequences show the effectiveness of the proposed algorithm in terms of the visual quality of segmentation results and the computation time.</span></p></div>\",\"PeriodicalId\":101062,\"journal\":{\"name\":\"Real-Time Imaging\",\"volume\":\"10 2\",\"pages\":\"Pages 117-125\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.rti.2004.02.006\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Real-Time Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1077201404000087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Real-Time Imaging","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077201404000087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

随着多媒体应用和基于内容功能的增加,需要高效的视频编码方法。运动图像专家组4 (MPEG-4)通过引入视频对象平面(VOP)的概念,提供了基于内容的功能。输入序列的每一帧被分割成许多任意形状的图像区域或VOP,以便每个VOP描述一个语义上有意义的对象或感兴趣的视频内容。为了实现MPEG-4的实时应用,需要一种快速的视频序列自动目标分割方法。提出了一种快速自动生成VOP的算法,该算法由目标块分割和边界块分割两部分组成。前者定义帧内基于块的对象区域,后者生成基于像素的对象掩码。基于块的目标区域搜索和分割区域对边界块的限制减少了计算量。两个测试序列的实验结果表明,该算法在分割结果的视觉质量和计算时间方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fast automatic VOP generation using boundary block segmentation

With the increase of multimedia applications and content-based functionalities, efficient video coding methods are necessary. The moving picture experts group-4 (MPEG-4) provides content-based functionalities by introducing the concept of the video object plane (VOP). Each frame of the input sequence is segmented into a number of arbitrarily shaped image regions or VOP's so that each VOP describes a semantically meaningful object or video content of interest.

For real-time applications of MPEG-4, a fast automatic object segmentation method of video sequences is needed. We propose a fast automatic VOP generation algorithm composed of two parts: object block segmentation and boundary block segmentation. The former defines block-based object regions in a frame and the latter generates the pixel-based object mask. Block-based object region search and restriction of segmentation regions to boundary blocks reduce a computational load. Experimental results with two test sequences show the effectiveness of the proposed algorithm in terms of the visual quality of segmentation results and the computation time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信