上颌窦癌重离子粒子放射治疗后视网膜病变1例报告。

Q3 Medicine
Choong Man Choi, Se Joon Woo
{"title":"上颌窦癌重离子粒子放射治疗后视网膜病变1例报告。","authors":"Choong Man Choi, Se Joon Woo","doi":"10.3341/kjo.2022.0119","DOIUrl":null,"url":null,"abstract":"Dear Editor, Radiation retinopathy (RR) is a delayed obstructive microvascular retinopathy that usually develops months to years after radiation therapy and has characteristic findings, such as intraretinal hemorrhage, cotton wool patches, and capillary nonperfusion. Heavy ion particle therapy (HIPT) has emerged as a new technology owing to its safety. Currently, few cases of RR after HIPT have been reported in Japan [1]. Here, we report the first case of RR after HIPT in South Korea. This report was approved by the Institutional Review Board of Seoul National University Bundang Hospital (No. B-2208-774-706) and the patient provided written informed consent for publication of this case report. A 37-year-old male patient visited the clinic for evaluation of his eye 1 month after receiving a total dose of 70.4 Gy carbon HIPT over 16 fractions in an area that included the optic nerve for undifferentiated polymorphic sarcoma in the right maxillary sinus. Brain and orbital magnetic resonance imaging (MRI) revealed that the tumor was in contact with the medial and inferior rectus muscles but did not invade the eyeball or optic nerve. Dendritic cell-based cancer vaccine treatment was concurrently combined with HIPT. Corrected visual acuity of 20 / 16 in the right eye was measured, and no abnormalities were found in the anterior segment and fundus. After 23 months of HIPT, the corrected visual acuity was 20 / 125 in the right eye. Relative afferent pupillary defect and optic disc pallor were present in the right eye. Although atrophy or inflammation of the optic nerve was not confirmed by MRI, circumferential peripheral visual field defect was present. These were signs of optic neuropathy. Fluorescein angiography and optical coherence tomography (OCT) angiography were performed. There was no retinal neovascularization, but extensive nonperfusion of the peripheral retina including the macular area with multiple intraretinal hemorrhages and cotton wool patches was observed in the right eye (Fig. 1A–1D). Since the choroidal and retinal perfusion times were within normal range, diseases that induce perfusion abnormalities, such as retinal artery occlusion or ocular ischemic syndrome were excluded. Panretinal photocoagulation was performed to prevent neovascular complications. After 33 months of HIPT, the visual-evoked potential revealed decreased P100 amplitude in the right eye which could be explained by both RR and radiation optic neuropathy. Panretinal photocoagulation was additionally performed because of iris neovascularization. After 3 months, the intraocular pressure increased to 24 mmHg with worsening of iris neovascularization in the right eye. Under the diagnosis of neovascular glaucoma, the intraocular pressure-lowering drugs were prescribed. Additionally, intravitreal bevacizumab (Avastin, Roche) was administered to the right eye five times every few months. After 59 months of HIPT, cataract surgery was performed in the right eye for an intumescent cataract (Fig. 1E). Even after cataract surgery, the patient was unable to sense light with the right eye. Slit-lamp examination showed no iris neovascularization. On funduscopic examination, severe optic disc atrophy was observed (Fig. 1F). OCT showed overall retinal thinning and disruption in the right eye (Fig. 1G). Recently, HIPT has been widely used in multiple periorbital cancer for its advantage of “Bragg peak” and “high relative biological effectiveness.” Bragg peak is a feature of particle radiation, delivering its maximum radiation dose to the tumor and minimizing damage to surrounding normal tissue [2]. With the Bragg peak, the occurrence of RR would be low with particle therapy; a previous study confirmed the superiority of particle therapy for RR occurrence [3]. Furthermore, the high relative biological effectiveness of HIPT compared to other radiation therapies enables less radiation to destroy the tumor [4]. Risk factors for the development of RR include total raKorean J Ophthalmol 2023;37(1):88-90 https://doi.org/10.3341/kjo.2022.0119","PeriodicalId":17883,"journal":{"name":"Korean Journal of Ophthalmology : KJO","volume":"37 1","pages":"88-90"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/db/f1/kjo-2022-0119.PMC9935066.pdf","citationCount":"0","resultStr":"{\"title\":\"Radiation Retinopathy after Heavy Ion Particle Therapy for Maxillary Sinus Cancer: A Case Report.\",\"authors\":\"Choong Man Choi, Se Joon Woo\",\"doi\":\"10.3341/kjo.2022.0119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dear Editor, Radiation retinopathy (RR) is a delayed obstructive microvascular retinopathy that usually develops months to years after radiation therapy and has characteristic findings, such as intraretinal hemorrhage, cotton wool patches, and capillary nonperfusion. Heavy ion particle therapy (HIPT) has emerged as a new technology owing to its safety. Currently, few cases of RR after HIPT have been reported in Japan [1]. Here, we report the first case of RR after HIPT in South Korea. This report was approved by the Institutional Review Board of Seoul National University Bundang Hospital (No. B-2208-774-706) and the patient provided written informed consent for publication of this case report. A 37-year-old male patient visited the clinic for evaluation of his eye 1 month after receiving a total dose of 70.4 Gy carbon HIPT over 16 fractions in an area that included the optic nerve for undifferentiated polymorphic sarcoma in the right maxillary sinus. Brain and orbital magnetic resonance imaging (MRI) revealed that the tumor was in contact with the medial and inferior rectus muscles but did not invade the eyeball or optic nerve. Dendritic cell-based cancer vaccine treatment was concurrently combined with HIPT. Corrected visual acuity of 20 / 16 in the right eye was measured, and no abnormalities were found in the anterior segment and fundus. After 23 months of HIPT, the corrected visual acuity was 20 / 125 in the right eye. Relative afferent pupillary defect and optic disc pallor were present in the right eye. Although atrophy or inflammation of the optic nerve was not confirmed by MRI, circumferential peripheral visual field defect was present. These were signs of optic neuropathy. Fluorescein angiography and optical coherence tomography (OCT) angiography were performed. There was no retinal neovascularization, but extensive nonperfusion of the peripheral retina including the macular area with multiple intraretinal hemorrhages and cotton wool patches was observed in the right eye (Fig. 1A–1D). Since the choroidal and retinal perfusion times were within normal range, diseases that induce perfusion abnormalities, such as retinal artery occlusion or ocular ischemic syndrome were excluded. Panretinal photocoagulation was performed to prevent neovascular complications. After 33 months of HIPT, the visual-evoked potential revealed decreased P100 amplitude in the right eye which could be explained by both RR and radiation optic neuropathy. Panretinal photocoagulation was additionally performed because of iris neovascularization. After 3 months, the intraocular pressure increased to 24 mmHg with worsening of iris neovascularization in the right eye. Under the diagnosis of neovascular glaucoma, the intraocular pressure-lowering drugs were prescribed. Additionally, intravitreal bevacizumab (Avastin, Roche) was administered to the right eye five times every few months. After 59 months of HIPT, cataract surgery was performed in the right eye for an intumescent cataract (Fig. 1E). Even after cataract surgery, the patient was unable to sense light with the right eye. Slit-lamp examination showed no iris neovascularization. On funduscopic examination, severe optic disc atrophy was observed (Fig. 1F). OCT showed overall retinal thinning and disruption in the right eye (Fig. 1G). Recently, HIPT has been widely used in multiple periorbital cancer for its advantage of “Bragg peak” and “high relative biological effectiveness.” Bragg peak is a feature of particle radiation, delivering its maximum radiation dose to the tumor and minimizing damage to surrounding normal tissue [2]. With the Bragg peak, the occurrence of RR would be low with particle therapy; a previous study confirmed the superiority of particle therapy for RR occurrence [3]. Furthermore, the high relative biological effectiveness of HIPT compared to other radiation therapies enables less radiation to destroy the tumor [4]. Risk factors for the development of RR include total raKorean J Ophthalmol 2023;37(1):88-90 https://doi.org/10.3341/kjo.2022.0119\",\"PeriodicalId\":17883,\"journal\":{\"name\":\"Korean Journal of Ophthalmology : KJO\",\"volume\":\"37 1\",\"pages\":\"88-90\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/db/f1/kjo-2022-0119.PMC9935066.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Korean Journal of Ophthalmology : KJO\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3341/kjo.2022.0119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Ophthalmology : KJO","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3341/kjo.2022.0119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Radiation Retinopathy after Heavy Ion Particle Therapy for Maxillary Sinus Cancer: A Case Report.

Radiation Retinopathy after Heavy Ion Particle Therapy for Maxillary Sinus Cancer: A Case Report.
Dear Editor, Radiation retinopathy (RR) is a delayed obstructive microvascular retinopathy that usually develops months to years after radiation therapy and has characteristic findings, such as intraretinal hemorrhage, cotton wool patches, and capillary nonperfusion. Heavy ion particle therapy (HIPT) has emerged as a new technology owing to its safety. Currently, few cases of RR after HIPT have been reported in Japan [1]. Here, we report the first case of RR after HIPT in South Korea. This report was approved by the Institutional Review Board of Seoul National University Bundang Hospital (No. B-2208-774-706) and the patient provided written informed consent for publication of this case report. A 37-year-old male patient visited the clinic for evaluation of his eye 1 month after receiving a total dose of 70.4 Gy carbon HIPT over 16 fractions in an area that included the optic nerve for undifferentiated polymorphic sarcoma in the right maxillary sinus. Brain and orbital magnetic resonance imaging (MRI) revealed that the tumor was in contact with the medial and inferior rectus muscles but did not invade the eyeball or optic nerve. Dendritic cell-based cancer vaccine treatment was concurrently combined with HIPT. Corrected visual acuity of 20 / 16 in the right eye was measured, and no abnormalities were found in the anterior segment and fundus. After 23 months of HIPT, the corrected visual acuity was 20 / 125 in the right eye. Relative afferent pupillary defect and optic disc pallor were present in the right eye. Although atrophy or inflammation of the optic nerve was not confirmed by MRI, circumferential peripheral visual field defect was present. These were signs of optic neuropathy. Fluorescein angiography and optical coherence tomography (OCT) angiography were performed. There was no retinal neovascularization, but extensive nonperfusion of the peripheral retina including the macular area with multiple intraretinal hemorrhages and cotton wool patches was observed in the right eye (Fig. 1A–1D). Since the choroidal and retinal perfusion times were within normal range, diseases that induce perfusion abnormalities, such as retinal artery occlusion or ocular ischemic syndrome were excluded. Panretinal photocoagulation was performed to prevent neovascular complications. After 33 months of HIPT, the visual-evoked potential revealed decreased P100 amplitude in the right eye which could be explained by both RR and radiation optic neuropathy. Panretinal photocoagulation was additionally performed because of iris neovascularization. After 3 months, the intraocular pressure increased to 24 mmHg with worsening of iris neovascularization in the right eye. Under the diagnosis of neovascular glaucoma, the intraocular pressure-lowering drugs were prescribed. Additionally, intravitreal bevacizumab (Avastin, Roche) was administered to the right eye five times every few months. After 59 months of HIPT, cataract surgery was performed in the right eye for an intumescent cataract (Fig. 1E). Even after cataract surgery, the patient was unable to sense light with the right eye. Slit-lamp examination showed no iris neovascularization. On funduscopic examination, severe optic disc atrophy was observed (Fig. 1F). OCT showed overall retinal thinning and disruption in the right eye (Fig. 1G). Recently, HIPT has been widely used in multiple periorbital cancer for its advantage of “Bragg peak” and “high relative biological effectiveness.” Bragg peak is a feature of particle radiation, delivering its maximum radiation dose to the tumor and minimizing damage to surrounding normal tissue [2]. With the Bragg peak, the occurrence of RR would be low with particle therapy; a previous study confirmed the superiority of particle therapy for RR occurrence [3]. Furthermore, the high relative biological effectiveness of HIPT compared to other radiation therapies enables less radiation to destroy the tumor [4]. Risk factors for the development of RR include total raKorean J Ophthalmol 2023;37(1):88-90 https://doi.org/10.3341/kjo.2022.0119
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Korean Journal of Ophthalmology : KJO
Korean Journal of Ophthalmology : KJO Medicine-Ophthalmology
CiteScore
2.40
自引率
0.00%
发文量
84
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信