时间多重递归理论中的巧合问题

Q1 Mathematics
B.O. Akinkunmi
{"title":"时间多重递归理论中的巧合问题","authors":"B.O. Akinkunmi","doi":"10.1016/j.jal.2015.12.001","DOIUrl":null,"url":null,"abstract":"<div><p>Logical theories have been developed which have allowed temporal reasoning about eventualities (à la Galton) such as states, processes, actions, events and complex eventualities such as sequences and recurrences of other eventualities. This paper presents the problem of coincidence within the framework of a first order logical theory formalizing temporal multiple recurrence of two sequences of fixed duration eventualities and presents a solution to it.</p><p>The coincidence problem is described as: <em>if two complex eventualities (or eventuality sequences) consisting respectively of component eventualities</em> <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> <em>and</em> <span><math><msub><mrow><mi>y</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> <em>both recur over an interval k and all eventualities are of fixed durations, is there a subinterval of k over which the incidence</em> <span><math><msub><mrow><mi>x</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> <em>and</em> <span><math><msub><mrow><mi>y</mi></mrow><mrow><mi>u</mi></mrow></msub></math></span> <em>for</em> <span><math><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mi>r</mi></math></span> <em>and</em> <span><math><mn>0</mn><mo>≤</mo><mi>u</mi><mo>≤</mo><mi>s</mi></math></span> <em>coincide</em>? The solution presented here formalizes the intuition that a solution can be found by temporal projection over a cycle of the multiple recurrence of both sequences.</p></div>","PeriodicalId":54881,"journal":{"name":"Journal of Applied Logic","volume":"15 ","pages":"Pages 46-68"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jal.2015.12.001","citationCount":"2","resultStr":"{\"title\":\"The problem of coincidence in a theory of temporal multiple recurrence\",\"authors\":\"B.O. Akinkunmi\",\"doi\":\"10.1016/j.jal.2015.12.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Logical theories have been developed which have allowed temporal reasoning about eventualities (à la Galton) such as states, processes, actions, events and complex eventualities such as sequences and recurrences of other eventualities. This paper presents the problem of coincidence within the framework of a first order logical theory formalizing temporal multiple recurrence of two sequences of fixed duration eventualities and presents a solution to it.</p><p>The coincidence problem is described as: <em>if two complex eventualities (or eventuality sequences) consisting respectively of component eventualities</em> <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> <em>and</em> <span><math><msub><mrow><mi>y</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> <em>both recur over an interval k and all eventualities are of fixed durations, is there a subinterval of k over which the incidence</em> <span><math><msub><mrow><mi>x</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> <em>and</em> <span><math><msub><mrow><mi>y</mi></mrow><mrow><mi>u</mi></mrow></msub></math></span> <em>for</em> <span><math><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mi>r</mi></math></span> <em>and</em> <span><math><mn>0</mn><mo>≤</mo><mi>u</mi><mo>≤</mo><mi>s</mi></math></span> <em>coincide</em>? The solution presented here formalizes the intuition that a solution can be found by temporal projection over a cycle of the multiple recurrence of both sequences.</p></div>\",\"PeriodicalId\":54881,\"journal\":{\"name\":\"Journal of Applied Logic\",\"volume\":\"15 \",\"pages\":\"Pages 46-68\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jal.2015.12.001\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570868315001251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Logic","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570868315001251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

逻辑理论已经被开发出来,它允许对偶然性(如状态,过程,行动,事件和复杂的偶然性,如其他偶然性的序列和递归)进行时间推理。本文提出了两个定时偶然性序列的时间多重递推的一阶逻辑理论框架内的重合问题,并给出了其解决方法。符合问题描述为:如果两个复事件(或事件序列)分别由组成事件x0,x1,…,xr和y0,y1,…,ys在一个区间k上循环,并且所有的事件都是固定的持续时间,那么在k上是否存在一个子区间,使得0≤t≤r和0≤u≤s的事件xt和yu重合?这里给出的解决方案形式化了一种直觉,即解决方案可以通过两个序列的多次递归的一个循环上的时间投影来找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The problem of coincidence in a theory of temporal multiple recurrence

Logical theories have been developed which have allowed temporal reasoning about eventualities (à la Galton) such as states, processes, actions, events and complex eventualities such as sequences and recurrences of other eventualities. This paper presents the problem of coincidence within the framework of a first order logical theory formalizing temporal multiple recurrence of two sequences of fixed duration eventualities and presents a solution to it.

The coincidence problem is described as: if two complex eventualities (or eventuality sequences) consisting respectively of component eventualities x0,x1,,xr and y0,y1,,ys both recur over an interval k and all eventualities are of fixed durations, is there a subinterval of k over which the incidence xt and yu for 0tr and 0us coincide? The solution presented here formalizes the intuition that a solution can be found by temporal projection over a cycle of the multiple recurrence of both sequences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Logic
Journal of Applied Logic COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
1.13
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Cessation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信