{"title":"西澳大利亚州交流与直流公共电动汽车充电站使用情况的比较研究","authors":"Kai Li Lim , Stuart Speidel , Thomas Bräunl","doi":"10.1016/j.rset.2022.100021","DOIUrl":null,"url":null,"abstract":"<div><p>DC fast-charging stations can charge an electric vehicle several times faster than Level 2 AC charging stations. Using a network of DC charging stations, it becomes possible to travel in electric vehicles for long-distance, cross-country driving with only short recharging stops. This paper examines and compares typical customer usage patterns at DC fast-charging stations (50 kW) against Level 2 AC charging stations (7 kW) to study the benefits of transitioning to DC charging for Western Australia. It includes data collected from The University of Western Australia’s AC and DC charging network in the Perth metropolitan area and stations along the highway connecting Perth to Augusta in the rural South West of Western Australia (over 300 km apart). A cost model is drawn up to calculate the local operating cost and break-even requirement across several different styles of charging stations. User behaviour and the adoption of certain charging infrastructures are crucial for the general uptake of electric vehicles. Notwithstanding, national electric vehicle charging standards and infrastructure availability have a fundamental influence on the electrification of transport.</p></div>","PeriodicalId":101071,"journal":{"name":"Renewable and Sustainable Energy Transition","volume":"2 ","pages":"Article 100021"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667095X22000058/pdfft?md5=f9bc671a9e6310ed4cea580d96d48b98&pid=1-s2.0-S2667095X22000058-main.pdf","citationCount":"6","resultStr":"{\"title\":\"A comparative study of AC and DC public electric vehicle charging station usage in Western Australia\",\"authors\":\"Kai Li Lim , Stuart Speidel , Thomas Bräunl\",\"doi\":\"10.1016/j.rset.2022.100021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>DC fast-charging stations can charge an electric vehicle several times faster than Level 2 AC charging stations. Using a network of DC charging stations, it becomes possible to travel in electric vehicles for long-distance, cross-country driving with only short recharging stops. This paper examines and compares typical customer usage patterns at DC fast-charging stations (50 kW) against Level 2 AC charging stations (7 kW) to study the benefits of transitioning to DC charging for Western Australia. It includes data collected from The University of Western Australia’s AC and DC charging network in the Perth metropolitan area and stations along the highway connecting Perth to Augusta in the rural South West of Western Australia (over 300 km apart). A cost model is drawn up to calculate the local operating cost and break-even requirement across several different styles of charging stations. User behaviour and the adoption of certain charging infrastructures are crucial for the general uptake of electric vehicles. Notwithstanding, national electric vehicle charging standards and infrastructure availability have a fundamental influence on the electrification of transport.</p></div>\",\"PeriodicalId\":101071,\"journal\":{\"name\":\"Renewable and Sustainable Energy Transition\",\"volume\":\"2 \",\"pages\":\"Article 100021\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667095X22000058/pdfft?md5=f9bc671a9e6310ed4cea580d96d48b98&pid=1-s2.0-S2667095X22000058-main.pdf\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable and Sustainable Energy Transition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667095X22000058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Transition","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667095X22000058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A comparative study of AC and DC public electric vehicle charging station usage in Western Australia
DC fast-charging stations can charge an electric vehicle several times faster than Level 2 AC charging stations. Using a network of DC charging stations, it becomes possible to travel in electric vehicles for long-distance, cross-country driving with only short recharging stops. This paper examines and compares typical customer usage patterns at DC fast-charging stations (50 kW) against Level 2 AC charging stations (7 kW) to study the benefits of transitioning to DC charging for Western Australia. It includes data collected from The University of Western Australia’s AC and DC charging network in the Perth metropolitan area and stations along the highway connecting Perth to Augusta in the rural South West of Western Australia (over 300 km apart). A cost model is drawn up to calculate the local operating cost and break-even requirement across several different styles of charging stations. User behaviour and the adoption of certain charging infrastructures are crucial for the general uptake of electric vehicles. Notwithstanding, national electric vehicle charging standards and infrastructure availability have a fundamental influence on the electrification of transport.