Erick C. Jones Jr. , Sean Yaw , Jeffrey A. Bennett , Jonathan D. Ogland-Hand , Cooper Strahan , Richard S. Middleton
{"title":"设计多阶段二氧化碳捕获和存储基础设施部署","authors":"Erick C. Jones Jr. , Sean Yaw , Jeffrey A. Bennett , Jonathan D. Ogland-Hand , Cooper Strahan , Richard S. Middleton","doi":"10.1016/j.rset.2022.100023","DOIUrl":null,"url":null,"abstract":"<div><p>CO<span><math><msub><mrow></mrow><mn>2</mn></msub></math></span> capture and storage (CCS) is a climate change mitigation strategy aimed at reducing the amount of CO<span><math><msub><mrow></mrow><mn>2</mn></msub></math></span> vented into the atmosphere by capturing CO<span><math><msub><mrow></mrow><mn>2</mn></msub></math></span> emissions from industrial sources, transporting the CO<span><math><msub><mrow></mrow><mn>2</mn></msub></math></span> via a dedicated pipeline network, and injecting it into geologic reservoirs. Designing CCS infrastructure is a complex problem requiring concurrent optimization of source selection, reservoir selection, and pipeline routing decisions. Current CCS infrastructure design methods assume that project parameters including costs, capacities, and availability, remain constant throughout the project’s lifespan. In this research, we introduce a novel, multi-phased, CCS infrastructure design model that allows for analysis of more complex scenarios that allow for variations in project parameters across distinct phases. We demonstrate the efficacy of our approach with theoretical analysis and an evaluation using real CCS infrastructure data.</p></div>","PeriodicalId":101071,"journal":{"name":"Renewable and Sustainable Energy Transition","volume":"2 ","pages":"Article 100023"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667095X22000071/pdfft?md5=f422e36d599ce0b33dcaf54d0c608bf8&pid=1-s2.0-S2667095X22000071-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Designing multi-phased CO2 capture and storage infrastructure deployments\",\"authors\":\"Erick C. Jones Jr. , Sean Yaw , Jeffrey A. Bennett , Jonathan D. Ogland-Hand , Cooper Strahan , Richard S. Middleton\",\"doi\":\"10.1016/j.rset.2022.100023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>CO<span><math><msub><mrow></mrow><mn>2</mn></msub></math></span> capture and storage (CCS) is a climate change mitigation strategy aimed at reducing the amount of CO<span><math><msub><mrow></mrow><mn>2</mn></msub></math></span> vented into the atmosphere by capturing CO<span><math><msub><mrow></mrow><mn>2</mn></msub></math></span> emissions from industrial sources, transporting the CO<span><math><msub><mrow></mrow><mn>2</mn></msub></math></span> via a dedicated pipeline network, and injecting it into geologic reservoirs. Designing CCS infrastructure is a complex problem requiring concurrent optimization of source selection, reservoir selection, and pipeline routing decisions. Current CCS infrastructure design methods assume that project parameters including costs, capacities, and availability, remain constant throughout the project’s lifespan. In this research, we introduce a novel, multi-phased, CCS infrastructure design model that allows for analysis of more complex scenarios that allow for variations in project parameters across distinct phases. We demonstrate the efficacy of our approach with theoretical analysis and an evaluation using real CCS infrastructure data.</p></div>\",\"PeriodicalId\":101071,\"journal\":{\"name\":\"Renewable and Sustainable Energy Transition\",\"volume\":\"2 \",\"pages\":\"Article 100023\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667095X22000071/pdfft?md5=f422e36d599ce0b33dcaf54d0c608bf8&pid=1-s2.0-S2667095X22000071-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable and Sustainable Energy Transition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667095X22000071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Transition","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667095X22000071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Designing multi-phased CO2 capture and storage infrastructure deployments
CO capture and storage (CCS) is a climate change mitigation strategy aimed at reducing the amount of CO vented into the atmosphere by capturing CO emissions from industrial sources, transporting the CO via a dedicated pipeline network, and injecting it into geologic reservoirs. Designing CCS infrastructure is a complex problem requiring concurrent optimization of source selection, reservoir selection, and pipeline routing decisions. Current CCS infrastructure design methods assume that project parameters including costs, capacities, and availability, remain constant throughout the project’s lifespan. In this research, we introduce a novel, multi-phased, CCS infrastructure design model that allows for analysis of more complex scenarios that allow for variations in project parameters across distinct phases. We demonstrate the efficacy of our approach with theoretical analysis and an evaluation using real CCS infrastructure data.