内轴变换的微分和拓扑性质

Evan C Sherbrooke , Nicholas M Patrikalakis , Franz-Erich Wolter
{"title":"内轴变换的微分和拓扑性质","authors":"Evan C Sherbrooke ,&nbsp;Nicholas M Patrikalakis ,&nbsp;Franz-Erich Wolter","doi":"10.1006/gmip.1996.0047","DOIUrl":null,"url":null,"abstract":"<div><p>The<em>medial axis transform</em>is a representation of an object which has been shown to be useful in design, interrogation, animation, finite element mesh generation, performance analysis, manufacturing simulation, path planning, and tolerance specification. In this paper, the theory of the medial axis transform for 3-D objects is developed. For objects with piecewise<em>C</em><sup>2</sup>boundaries, relationships between the curvature of the boundary and the position of the medial axis are developed. For<em>n</em>-dimensional submanifolds of <span><math><mtext>R</mtext></math></span><sup><em>n</em></sup>with boundaries which are piecewise<em>C</em><sup>2</sup>and completely<em>G</em><sup>1</sup>, a deformation retract is set up between each object and its medial axis, which demonstrates that if the object is path connected, then so is its medial axis. Finally, it is proven that path connected polyhedral solids without cavities have path connected medial axes.</p></div>","PeriodicalId":100591,"journal":{"name":"Graphical Models and Image Processing","volume":"58 6","pages":"Pages 574-592"},"PeriodicalIF":0.0000,"publicationDate":"1996-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1006/gmip.1996.0047","citationCount":"95","resultStr":"{\"title\":\"Differential and Topological Properties of Medial Axis Transforms\",\"authors\":\"Evan C Sherbrooke ,&nbsp;Nicholas M Patrikalakis ,&nbsp;Franz-Erich Wolter\",\"doi\":\"10.1006/gmip.1996.0047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The<em>medial axis transform</em>is a representation of an object which has been shown to be useful in design, interrogation, animation, finite element mesh generation, performance analysis, manufacturing simulation, path planning, and tolerance specification. In this paper, the theory of the medial axis transform for 3-D objects is developed. For objects with piecewise<em>C</em><sup>2</sup>boundaries, relationships between the curvature of the boundary and the position of the medial axis are developed. For<em>n</em>-dimensional submanifolds of <span><math><mtext>R</mtext></math></span><sup><em>n</em></sup>with boundaries which are piecewise<em>C</em><sup>2</sup>and completely<em>G</em><sup>1</sup>, a deformation retract is set up between each object and its medial axis, which demonstrates that if the object is path connected, then so is its medial axis. Finally, it is proven that path connected polyhedral solids without cavities have path connected medial axes.</p></div>\",\"PeriodicalId\":100591,\"journal\":{\"name\":\"Graphical Models and Image Processing\",\"volume\":\"58 6\",\"pages\":\"Pages 574-592\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1006/gmip.1996.0047\",\"citationCount\":\"95\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphical Models and Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1077316996900477\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077316996900477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 95

摘要

中轴变换是一个对象的表示形式,在设计、询问、动画、有限元网格生成、性能分析、制造仿真、路径规划和公差规范中都很有用。本文建立了三维物体的中轴变换理论。对于具有分段ec2边界的对象,开发了边界曲率与中轴线位置之间的关系。在边界为piecewisec2和completelyG1的rn的形式维子流形中,每个对象与其内侧轴之间建立了一个变形缩回,这表明如果对象是路径连接的,则其内侧轴也是路径连接的。最后,证明了无空腔的路径连通多面体具有路径连通的中轴线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differential and Topological Properties of Medial Axis Transforms

Themedial axis transformis a representation of an object which has been shown to be useful in design, interrogation, animation, finite element mesh generation, performance analysis, manufacturing simulation, path planning, and tolerance specification. In this paper, the theory of the medial axis transform for 3-D objects is developed. For objects with piecewiseC2boundaries, relationships between the curvature of the boundary and the position of the medial axis are developed. Forn-dimensional submanifolds of Rnwith boundaries which are piecewiseC2and completelyG1, a deformation retract is set up between each object and its medial axis, which demonstrates that if the object is path connected, then so is its medial axis. Finally, it is proven that path connected polyhedral solids without cavities have path connected medial axes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信