基于贝叶斯组合模型的中国能源需求预测

Chai Jian, Guo Ju'E, Lu Hu
{"title":"基于贝叶斯组合模型的中国能源需求预测","authors":"Chai Jian,&nbsp;Guo Ju'E,&nbsp;Lu Hu","doi":"10.1016/S1872-583X(09)60012-7","DOIUrl":null,"url":null,"abstract":"<div><p>To analyze the impact of the related economic factors on China's energy demand, Path analysis is used to analyze the major factors and their direct and indirect effects on energy demand. This study showed that the main factors that affect the energy demand are the economic growth, the total population, and the primary energy structure, the economic growth is the main determining factor, and the primary energy structure is the major restrictive factor. On this basis and considering the multicollinearity and the validity of the forecast, we established a partial least-square (PLS) and the trend extrapolation prediction model, and then we sum up all the information to found a PLS—trend extrapolation combination forecasting model based on the optimized combining forecast theory. Finally, we obtain the probability distribution of the error using the Bayesian statistic theory and find the confidence interval of combining forecasting result. The results indicate that the outcome of combining forecasting will be more precise after using the Bayesian error correction approach.</p></div>","PeriodicalId":100240,"journal":{"name":"China Population, Resources and Environment","volume":"18 4","pages":"Pages 50-55"},"PeriodicalIF":0.0000,"publicationDate":"2008-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1872-583X(09)60012-7","citationCount":"14","resultStr":"{\"title\":\"Forecasting energy demand of China using Bayesian Combination model\",\"authors\":\"Chai Jian,&nbsp;Guo Ju'E,&nbsp;Lu Hu\",\"doi\":\"10.1016/S1872-583X(09)60012-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To analyze the impact of the related economic factors on China's energy demand, Path analysis is used to analyze the major factors and their direct and indirect effects on energy demand. This study showed that the main factors that affect the energy demand are the economic growth, the total population, and the primary energy structure, the economic growth is the main determining factor, and the primary energy structure is the major restrictive factor. On this basis and considering the multicollinearity and the validity of the forecast, we established a partial least-square (PLS) and the trend extrapolation prediction model, and then we sum up all the information to found a PLS—trend extrapolation combination forecasting model based on the optimized combining forecast theory. Finally, we obtain the probability distribution of the error using the Bayesian statistic theory and find the confidence interval of combining forecasting result. The results indicate that the outcome of combining forecasting will be more precise after using the Bayesian error correction approach.</p></div>\",\"PeriodicalId\":100240,\"journal\":{\"name\":\"China Population, Resources and Environment\",\"volume\":\"18 4\",\"pages\":\"Pages 50-55\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1872-583X(09)60012-7\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"China Population, Resources and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872583X09600127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Population, Resources and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872583X09600127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

为了分析相关经济因素对中国能源需求的影响,本文采用路径分析法分析了主要因素及其对能源需求的直接和间接影响。研究表明,影响我国能源需求的主要因素是经济增长、人口总量和一次能源结构,经济增长是主要决定因素,一次能源结构是主要制约因素。在此基础上,考虑多重共线性和预测的有效性,建立了偏最小二乘(PLS)和趋势外推预测模型,然后将所有信息汇总,建立了基于优化组合预测理论的PLS -趋势外推组合预测模型。最后利用贝叶斯统计理论得到误差的概率分布,并结合预测结果求出置信区间。结果表明,采用贝叶斯误差修正方法后的组合预测结果更加精确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forecasting energy demand of China using Bayesian Combination model

To analyze the impact of the related economic factors on China's energy demand, Path analysis is used to analyze the major factors and their direct and indirect effects on energy demand. This study showed that the main factors that affect the energy demand are the economic growth, the total population, and the primary energy structure, the economic growth is the main determining factor, and the primary energy structure is the major restrictive factor. On this basis and considering the multicollinearity and the validity of the forecast, we established a partial least-square (PLS) and the trend extrapolation prediction model, and then we sum up all the information to found a PLS—trend extrapolation combination forecasting model based on the optimized combining forecast theory. Finally, we obtain the probability distribution of the error using the Bayesian statistic theory and find the confidence interval of combining forecasting result. The results indicate that the outcome of combining forecasting will be more precise after using the Bayesian error correction approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信