Marı́a José Peñalver , Alexander N.P. Hiner , José Neptuno Rodrı́guez-López , Francisco Garcı́a-Cánovas , José Tudela
{"title":"酪氨酸酶催化单酚和邻二酚氧化过程中氧消耗的可变化学计量学的机制含义","authors":"Marı́a José Peñalver , Alexander N.P. Hiner , José Neptuno Rodrı́guez-López , Francisco Garcı́a-Cánovas , José Tudela","doi":"10.1016/S0167-4838(02)00264-9","DOIUrl":null,"url":null,"abstract":"<div><p>The stoichiometry of oxygen consumption during tyrosinase-catalyzed oxidation of an <em>o</em>-diphenol (4-<em>tert</em>-butylcatechol, TBC) and a monophenol (4-<em>tert</em>-butylphenol, TBP) has been determined. At high [substrate]/[enzyme] ratios, in the case of <em>o</em>-diphenols, the stoichiometry of the enzyme-catalyzed reaction was always 1 O<sub>2</sub>/2 <em>o</em>-diphenols, although if the <em>o</em>-quinone product was unstable, the apparent stoichiometry could tend to 1 O<sub>2</sub>/1 <em>o</em>-diphenol due to regeneration of an <em>o</em>-diphenol in a side reaction. In the case of monophenols, the stoichiometry could be 1 O<sub>2</sub>/1 monophenol or 1.5 O<sub>2</sub>/1 monophenol depending if the <em>o</em>-quinone product was stable or unstable, respectively. However, at low [substrate]/[enzyme] ratios, the oxygen/substrate stoichiometry could, even in the case where stable products are formed, be lower than 1 O<sub>2</sub>/2 substrates for <em>o</em>-diphenols or higher than 1 O<sub>2</sub>/1 substrate for monophenols. These data supported the mechanism proposed by Rodrı́guez-López et al. [J. Biol. Chem. 267 (1992) 3801–3810], in which, during hydroxylation of monophenols, tyrosinase first transformed monophenol to <em>o</em>-diphenol and then either catalyzed a further oxidation to form <em>o</em>-quinone or released it into the reaction medium. In this second case, subsequent oxidation of the <em>o</em>-diphenol resulted in additional oxygen consumption.</p></div>","PeriodicalId":100166,"journal":{"name":"Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0167-4838(02)00264-9","citationCount":"16","resultStr":"{\"title\":\"Mechanistic implications of variable stoichiometries of oxygen consumption during tyrosinase catalyzed oxidation of monophenols and o-diphenols\",\"authors\":\"Marı́a José Peñalver , Alexander N.P. Hiner , José Neptuno Rodrı́guez-López , Francisco Garcı́a-Cánovas , José Tudela\",\"doi\":\"10.1016/S0167-4838(02)00264-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The stoichiometry of oxygen consumption during tyrosinase-catalyzed oxidation of an <em>o</em>-diphenol (4-<em>tert</em>-butylcatechol, TBC) and a monophenol (4-<em>tert</em>-butylphenol, TBP) has been determined. At high [substrate]/[enzyme] ratios, in the case of <em>o</em>-diphenols, the stoichiometry of the enzyme-catalyzed reaction was always 1 O<sub>2</sub>/2 <em>o</em>-diphenols, although if the <em>o</em>-quinone product was unstable, the apparent stoichiometry could tend to 1 O<sub>2</sub>/1 <em>o</em>-diphenol due to regeneration of an <em>o</em>-diphenol in a side reaction. In the case of monophenols, the stoichiometry could be 1 O<sub>2</sub>/1 monophenol or 1.5 O<sub>2</sub>/1 monophenol depending if the <em>o</em>-quinone product was stable or unstable, respectively. However, at low [substrate]/[enzyme] ratios, the oxygen/substrate stoichiometry could, even in the case where stable products are formed, be lower than 1 O<sub>2</sub>/2 substrates for <em>o</em>-diphenols or higher than 1 O<sub>2</sub>/1 substrate for monophenols. These data supported the mechanism proposed by Rodrı́guez-López et al. [J. Biol. Chem. 267 (1992) 3801–3810], in which, during hydroxylation of monophenols, tyrosinase first transformed monophenol to <em>o</em>-diphenol and then either catalyzed a further oxidation to form <em>o</em>-quinone or released it into the reaction medium. In this second case, subsequent oxidation of the <em>o</em>-diphenol resulted in additional oxygen consumption.</p></div>\",\"PeriodicalId\":100166,\"journal\":{\"name\":\"Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0167-4838(02)00264-9\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167483802002649\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167483802002649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mechanistic implications of variable stoichiometries of oxygen consumption during tyrosinase catalyzed oxidation of monophenols and o-diphenols
The stoichiometry of oxygen consumption during tyrosinase-catalyzed oxidation of an o-diphenol (4-tert-butylcatechol, TBC) and a monophenol (4-tert-butylphenol, TBP) has been determined. At high [substrate]/[enzyme] ratios, in the case of o-diphenols, the stoichiometry of the enzyme-catalyzed reaction was always 1 O2/2 o-diphenols, although if the o-quinone product was unstable, the apparent stoichiometry could tend to 1 O2/1 o-diphenol due to regeneration of an o-diphenol in a side reaction. In the case of monophenols, the stoichiometry could be 1 O2/1 monophenol or 1.5 O2/1 monophenol depending if the o-quinone product was stable or unstable, respectively. However, at low [substrate]/[enzyme] ratios, the oxygen/substrate stoichiometry could, even in the case where stable products are formed, be lower than 1 O2/2 substrates for o-diphenols or higher than 1 O2/1 substrate for monophenols. These data supported the mechanism proposed by Rodrı́guez-López et al. [J. Biol. Chem. 267 (1992) 3801–3810], in which, during hydroxylation of monophenols, tyrosinase first transformed monophenol to o-diphenol and then either catalyzed a further oxidation to form o-quinone or released it into the reaction medium. In this second case, subsequent oxidation of the o-diphenol resulted in additional oxygen consumption.