壳理论模型问题奇点沿特征边界传播的新情形

Évariste Sanchez-Palencia
{"title":"壳理论模型问题奇点沿特征边界传播的新情形","authors":"Évariste Sanchez-Palencia","doi":"10.1016/S1620-7742(01)01325-3","DOIUrl":null,"url":null,"abstract":"<div><p>We continue a previous work [1] on propagation of singularities for model problems of thin shell theory in the parabolic and hyperbolic cases. The singularities along the characteristic boundaries are considered using extensions of the solutions out of the domain, adapted to either free or fixed boundaries. The corresponding transport equations are given except for the case of a characteristic fixed boundary for a hyperbolic shell, where the phenomenon is non local, but depends on the whole domain.</p></div>","PeriodicalId":100302,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics","volume":"329 5","pages":"Pages 315-321"},"PeriodicalIF":0.0000,"publicationDate":"2001-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1620-7742(01)01325-3","citationCount":"3","resultStr":"{\"title\":\"New cases of propagation of singularities along characteristic boundaries for model problems of shell theory\",\"authors\":\"Évariste Sanchez-Palencia\",\"doi\":\"10.1016/S1620-7742(01)01325-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We continue a previous work [1] on propagation of singularities for model problems of thin shell theory in the parabolic and hyperbolic cases. The singularities along the characteristic boundaries are considered using extensions of the solutions out of the domain, adapted to either free or fixed boundaries. The corresponding transport equations are given except for the case of a characteristic fixed boundary for a hyperbolic shell, where the phenomenon is non local, but depends on the whole domain.</p></div>\",\"PeriodicalId\":100302,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics\",\"volume\":\"329 5\",\"pages\":\"Pages 315-321\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1620-7742(01)01325-3\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1620774201013253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1620774201013253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们继续前人关于薄壳理论模型问题在抛物型和双曲型情况下奇点传播的研究工作。利用解在定义域外的扩展来考虑沿特征边界的奇异性,适用于自由边界或固定边界。给出了相应的输运方程,除了双曲壳的特征固定边界情况外,这种现象是非局部的,但取决于整个域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New cases of propagation of singularities along characteristic boundaries for model problems of shell theory

We continue a previous work [1] on propagation of singularities for model problems of thin shell theory in the parabolic and hyperbolic cases. The singularities along the characteristic boundaries are considered using extensions of the solutions out of the domain, adapted to either free or fixed boundaries. The corresponding transport equations are given except for the case of a characteristic fixed boundary for a hyperbolic shell, where the phenomenon is non local, but depends on the whole domain.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信