Ahmed S Fahad, Cheng-Yu Chung, Sheila N Lopez Acevedo, Nicoleen Boyle, Bharat Madan, Matias F Gutiérrez-González, Rodrigo Matus-Nicodemos, Amy D Laflin, Rukmini R Ladi, John Zhou, Jacy Wolfe, Sian Llewellyn-Lacey, Richard A Koup, Daniel C Douek, Henry H Balfour, David A Price, Brandon J DeKosky
{"title":"天然配对人T细胞受体库的永生化和功能筛选。","authors":"Ahmed S Fahad, Cheng-Yu Chung, Sheila N Lopez Acevedo, Nicoleen Boyle, Bharat Madan, Matias F Gutiérrez-González, Rodrigo Matus-Nicodemos, Amy D Laflin, Rukmini R Ladi, John Zhou, Jacy Wolfe, Sian Llewellyn-Lacey, Richard A Koup, Daniel C Douek, Henry H Balfour, David A Price, Brandon J DeKosky","doi":"10.1093/protein/gzab034","DOIUrl":null,"url":null,"abstract":"<p><p>Functional analyses of the T cell receptor (TCR) landscape can reveal critical information about protection from disease and molecular responses to vaccines. However, it has proven difficult to combine advanced next-generation sequencing technologies with methods to decode the peptide-major histocompatibility complex (pMHC) specificity of individual TCRs. We developed a new high-throughput approach to enable repertoire-scale functional evaluations of natively paired TCRs. In particular, we leveraged the immortalized nature of physically linked TCRα:β amplicon libraries to analyze binding against multiple recombinant pMHCs on a repertoire scale, and to exemplify the utility of this approach, we also performed affinity-based functional mapping in conjunction with quantitative next-generation sequencing to track antigen-specific TCRs. These data successfully validated a new immortalization and screening platform to facilitate detailed molecular analyses of disease-relevant antigen interactions with human TCRs.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9005053/pdf/gzab034.pdf","citationCount":"0","resultStr":"{\"title\":\"Immortalization and functional screening of natively paired human T cell receptor repertoires.\",\"authors\":\"Ahmed S Fahad, Cheng-Yu Chung, Sheila N Lopez Acevedo, Nicoleen Boyle, Bharat Madan, Matias F Gutiérrez-González, Rodrigo Matus-Nicodemos, Amy D Laflin, Rukmini R Ladi, John Zhou, Jacy Wolfe, Sian Llewellyn-Lacey, Richard A Koup, Daniel C Douek, Henry H Balfour, David A Price, Brandon J DeKosky\",\"doi\":\"10.1093/protein/gzab034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Functional analyses of the T cell receptor (TCR) landscape can reveal critical information about protection from disease and molecular responses to vaccines. However, it has proven difficult to combine advanced next-generation sequencing technologies with methods to decode the peptide-major histocompatibility complex (pMHC) specificity of individual TCRs. We developed a new high-throughput approach to enable repertoire-scale functional evaluations of natively paired TCRs. In particular, we leveraged the immortalized nature of physically linked TCRα:β amplicon libraries to analyze binding against multiple recombinant pMHCs on a repertoire scale, and to exemplify the utility of this approach, we also performed affinity-based functional mapping in conjunction with quantitative next-generation sequencing to track antigen-specific TCRs. These data successfully validated a new immortalization and screening platform to facilitate detailed molecular analyses of disease-relevant antigen interactions with human TCRs.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9005053/pdf/gzab034.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/protein/gzab034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/protein/gzab034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Immortalization and functional screening of natively paired human T cell receptor repertoires.
Functional analyses of the T cell receptor (TCR) landscape can reveal critical information about protection from disease and molecular responses to vaccines. However, it has proven difficult to combine advanced next-generation sequencing technologies with methods to decode the peptide-major histocompatibility complex (pMHC) specificity of individual TCRs. We developed a new high-throughput approach to enable repertoire-scale functional evaluations of natively paired TCRs. In particular, we leveraged the immortalized nature of physically linked TCRα:β amplicon libraries to analyze binding against multiple recombinant pMHCs on a repertoire scale, and to exemplify the utility of this approach, we also performed affinity-based functional mapping in conjunction with quantitative next-generation sequencing to track antigen-specific TCRs. These data successfully validated a new immortalization and screening platform to facilitate detailed molecular analyses of disease-relevant antigen interactions with human TCRs.