Dennis Arun Alexis , Zuleima T. Karpyn , Turgay Ertekin , Dustin Crandall
{"title":"煤的裂隙渗透率和相对渗透率及其对应力条件的依赖性","authors":"Dennis Arun Alexis , Zuleima T. Karpyn , Turgay Ertekin , Dustin Crandall","doi":"10.1016/j.juogr.2015.02.001","DOIUrl":null,"url":null,"abstract":"<div><p>Determination of petro-physical properties of coal bed methane (CBM) reservoirs is essential in evaluating a potential prospect for commercial exploitation. In particular, permeability of coal and relative permeability of coal to gas and water directly impact the amount of hydrocarbons that can be ultimately recovered. Due to the complex and heterogeneous nature of coal seams, proper relative permeability relationships are needed to accurately describe the transport characteristics of coal for reservoir modeling and production forecasting. In this work, absolute and relative permeability of different coal samples were determined experimentally under steady-state flowing conditions. Multiphase flow tests were conducted using brine, helium and carbon dioxide as the flowing phases under different magnitudes of confining and pore pressures. Results indicate that effective stress (confining pressure – average pore pressure) has a significant effect on both absolute and relative permeability of coal. With increases in effective stresses, the absolute permeability decreases. Effective permeability and relative permeability, as well as the cross over point and the width of the mobile two-phase region decrease as the effective stress increases. In addition, the mobile range of gas and water in the coal samples investigated corresponds with water saturations above 50%, irrespective of the base absolute permeability of the sample. In brine–carbon dioxide two-phase flow experiments, the effect of carbon dioxide adsorption was observed as effective permeabilities decreased in comparison to the helium–brine permeabilities at the same flowing ratios. As a result, relative permeability characteristics of CBM systems were found to be insufficiently represented as sole functions of fluid saturation. Field scale simulations of primary recovery from CBM systems using variable, stress-dependent relative permeabilities, showed a significant decrease in cumulative gas recovered. A multi-dimensional correlation between relative permeability, fluid saturation and specific surface area of the cleat network is proposed as a continuation from this work in order to account for stress-related changes in cleat network connectivity.</p></div>","PeriodicalId":100850,"journal":{"name":"Journal of Unconventional Oil and Gas Resources","volume":"10 ","pages":"Pages 1-10"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.juogr.2015.02.001","citationCount":"29","resultStr":"{\"title\":\"Fracture permeability and relative permeability of coal and their dependence on stress conditions\",\"authors\":\"Dennis Arun Alexis , Zuleima T. Karpyn , Turgay Ertekin , Dustin Crandall\",\"doi\":\"10.1016/j.juogr.2015.02.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Determination of petro-physical properties of coal bed methane (CBM) reservoirs is essential in evaluating a potential prospect for commercial exploitation. In particular, permeability of coal and relative permeability of coal to gas and water directly impact the amount of hydrocarbons that can be ultimately recovered. Due to the complex and heterogeneous nature of coal seams, proper relative permeability relationships are needed to accurately describe the transport characteristics of coal for reservoir modeling and production forecasting. In this work, absolute and relative permeability of different coal samples were determined experimentally under steady-state flowing conditions. Multiphase flow tests were conducted using brine, helium and carbon dioxide as the flowing phases under different magnitudes of confining and pore pressures. Results indicate that effective stress (confining pressure – average pore pressure) has a significant effect on both absolute and relative permeability of coal. With increases in effective stresses, the absolute permeability decreases. Effective permeability and relative permeability, as well as the cross over point and the width of the mobile two-phase region decrease as the effective stress increases. In addition, the mobile range of gas and water in the coal samples investigated corresponds with water saturations above 50%, irrespective of the base absolute permeability of the sample. In brine–carbon dioxide two-phase flow experiments, the effect of carbon dioxide adsorption was observed as effective permeabilities decreased in comparison to the helium–brine permeabilities at the same flowing ratios. As a result, relative permeability characteristics of CBM systems were found to be insufficiently represented as sole functions of fluid saturation. Field scale simulations of primary recovery from CBM systems using variable, stress-dependent relative permeabilities, showed a significant decrease in cumulative gas recovered. A multi-dimensional correlation between relative permeability, fluid saturation and specific surface area of the cleat network is proposed as a continuation from this work in order to account for stress-related changes in cleat network connectivity.</p></div>\",\"PeriodicalId\":100850,\"journal\":{\"name\":\"Journal of Unconventional Oil and Gas Resources\",\"volume\":\"10 \",\"pages\":\"Pages 1-10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.juogr.2015.02.001\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Unconventional Oil and Gas Resources\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213397615000087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Unconventional Oil and Gas Resources","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213397615000087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fracture permeability and relative permeability of coal and their dependence on stress conditions
Determination of petro-physical properties of coal bed methane (CBM) reservoirs is essential in evaluating a potential prospect for commercial exploitation. In particular, permeability of coal and relative permeability of coal to gas and water directly impact the amount of hydrocarbons that can be ultimately recovered. Due to the complex and heterogeneous nature of coal seams, proper relative permeability relationships are needed to accurately describe the transport characteristics of coal for reservoir modeling and production forecasting. In this work, absolute and relative permeability of different coal samples were determined experimentally under steady-state flowing conditions. Multiphase flow tests were conducted using brine, helium and carbon dioxide as the flowing phases under different magnitudes of confining and pore pressures. Results indicate that effective stress (confining pressure – average pore pressure) has a significant effect on both absolute and relative permeability of coal. With increases in effective stresses, the absolute permeability decreases. Effective permeability and relative permeability, as well as the cross over point and the width of the mobile two-phase region decrease as the effective stress increases. In addition, the mobile range of gas and water in the coal samples investigated corresponds with water saturations above 50%, irrespective of the base absolute permeability of the sample. In brine–carbon dioxide two-phase flow experiments, the effect of carbon dioxide adsorption was observed as effective permeabilities decreased in comparison to the helium–brine permeabilities at the same flowing ratios. As a result, relative permeability characteristics of CBM systems were found to be insufficiently represented as sole functions of fluid saturation. Field scale simulations of primary recovery from CBM systems using variable, stress-dependent relative permeabilities, showed a significant decrease in cumulative gas recovered. A multi-dimensional correlation between relative permeability, fluid saturation and specific surface area of the cleat network is proposed as a continuation from this work in order to account for stress-related changes in cleat network connectivity.