茶的大偏差autonormalisées原则为ı̂nes的马可夫

Mathieu Faure
{"title":"茶的大偏差autonormalisées原则为ı̂nes的马可夫","authors":"Mathieu Faure","doi":"10.1016/S0764-4442(01)01953-X","DOIUrl":null,"url":null,"abstract":"<div><p>We prove a self-normalized large deviation principle for sums of Banach space valued functions of a Markov chain. Self-normalization applies to situations for which a domination hypothesis would be necessary in order to obtain a full large deviation principle. We follow the lead of Dembo and Shao [2] who state partial large deviations principles for independent and identically distributed random sequences.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 9","pages":"Pages 885-890"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)01953-X","citationCount":"0","resultStr":"{\"title\":\"Principe de grandes déviations autonormalisées pour des chaı̂nes de Markov\",\"authors\":\"Mathieu Faure\",\"doi\":\"10.1016/S0764-4442(01)01953-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove a self-normalized large deviation principle for sums of Banach space valued functions of a Markov chain. Self-normalization applies to situations for which a domination hypothesis would be necessary in order to obtain a full large deviation principle. We follow the lead of Dembo and Shao [2] who state partial large deviations principles for independent and identically distributed random sequences.</p></div>\",\"PeriodicalId\":100300,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"volume\":\"333 9\",\"pages\":\"Pages 885-890\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0764-4442(01)01953-X\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S076444420101953X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S076444420101953X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

证明了马尔可夫链上的Banach空间值函数和的一个自归一化大偏差原理。自归一化适用于为了获得一个完整的大偏差原理而需要一个支配假设的情况。我们遵循Dembo和Shao[2]的领导,他们陈述了独立和同分布随机序列的部分大偏差原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Principe de grandes déviations autonormalisées pour des chaı̂nes de Markov

We prove a self-normalized large deviation principle for sums of Banach space valued functions of a Markov chain. Self-normalization applies to situations for which a domination hypothesis would be necessary in order to obtain a full large deviation principle. We follow the lead of Dembo and Shao [2] who state partial large deviations principles for independent and identically distributed random sequences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信