{"title":"葛根芩连汤对2型糖尿病大鼠沙格列汀药动学和药效学的影响。","authors":"Chao Yu, Mingyu Cui, Yifeng Yin, Fengmei Zhu, Yue Sui, Xueying Yan, Yingli Gai","doi":"10.1002/bdd.2374","DOIUrl":null,"url":null,"abstract":"<p>Gegenqinlian decoction (GQD) is a classic prescription of traditional Chinese medicine (TCM), which originated from Shanghanlun. The combination of GQD and hypoglycemic drugs (saxagliptin, Sax, metformin) is often used to treat Type 2 diabetes mellitus (T2DM) in TCM clinics. However, the herb–drug interactions (HDIs) between GQD and hypoglycemic drugs are still unclear. In order to determine the safety of the combination, we assessed the influences of GQD on the pharmacokinetics and pharmacodynamics of Sax in T2DM rats. The plasma concentration of Sax (5 mg/kg) pretreated with GQD (freeze-dried powder, 1.35 g/kg) or not was determined by high-performance liquid chromatography (HPLC), and pharmacokinetics parameters were calculated. The influence of GQD on the pharmacodynamics of Sax was investigated by detecting the levels of weight, (see abbreviations list) OGTT, TC, TG, LDL-C, HDL-C, FBG, FINS, HOMA-IR, QUICKI, AST, ALT, and the liver coefficient. The <i>C</i><sub>max</sub>, <i>AUC</i><sub>0-t</sub>,and <i>AUC</i><sub>0-∞</sub> of Sax increased significantly in the combination group whether in normal or T2DM rats. The results of pharmacodynamics showed that the weight of rats in each treatment group increased. FBG, TC, TG, LDL-C, and HOMA-IR decreased, HDL-C, FINS, and QUICKI increased significantly (<i>p</i> < 0.05) compared with the model control group. The result showed that the combination of GQD and Sax could not only improve the hypoglycemic effect but also increase the plasma exposure of Sax. The potential HDIs between GQD and Sax should be taken into consideration in clinics. Moreover, for the complexity of the human compared with experimental animals, as well as genetic differences, the in-depth study should be carried out to assess the uniformity of the pharmacokinetics and pharmacodynamics between rats and humans.</p>","PeriodicalId":8865,"journal":{"name":"Biopharmaceutics & Drug Disposition","volume":"44 6","pages":"396-405"},"PeriodicalIF":1.7000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Gegenqinlian decoction on pharmacokinetics and pharmacodynamics of saxagliptin in type 2 diabetes mellitus rats\",\"authors\":\"Chao Yu, Mingyu Cui, Yifeng Yin, Fengmei Zhu, Yue Sui, Xueying Yan, Yingli Gai\",\"doi\":\"10.1002/bdd.2374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Gegenqinlian decoction (GQD) is a classic prescription of traditional Chinese medicine (TCM), which originated from Shanghanlun. The combination of GQD and hypoglycemic drugs (saxagliptin, Sax, metformin) is often used to treat Type 2 diabetes mellitus (T2DM) in TCM clinics. However, the herb–drug interactions (HDIs) between GQD and hypoglycemic drugs are still unclear. In order to determine the safety of the combination, we assessed the influences of GQD on the pharmacokinetics and pharmacodynamics of Sax in T2DM rats. The plasma concentration of Sax (5 mg/kg) pretreated with GQD (freeze-dried powder, 1.35 g/kg) or not was determined by high-performance liquid chromatography (HPLC), and pharmacokinetics parameters were calculated. The influence of GQD on the pharmacodynamics of Sax was investigated by detecting the levels of weight, (see abbreviations list) OGTT, TC, TG, LDL-C, HDL-C, FBG, FINS, HOMA-IR, QUICKI, AST, ALT, and the liver coefficient. The <i>C</i><sub>max</sub>, <i>AUC</i><sub>0-t</sub>,and <i>AUC</i><sub>0-∞</sub> of Sax increased significantly in the combination group whether in normal or T2DM rats. The results of pharmacodynamics showed that the weight of rats in each treatment group increased. FBG, TC, TG, LDL-C, and HOMA-IR decreased, HDL-C, FINS, and QUICKI increased significantly (<i>p</i> < 0.05) compared with the model control group. The result showed that the combination of GQD and Sax could not only improve the hypoglycemic effect but also increase the plasma exposure of Sax. The potential HDIs between GQD and Sax should be taken into consideration in clinics. Moreover, for the complexity of the human compared with experimental animals, as well as genetic differences, the in-depth study should be carried out to assess the uniformity of the pharmacokinetics and pharmacodynamics between rats and humans.</p>\",\"PeriodicalId\":8865,\"journal\":{\"name\":\"Biopharmaceutics & Drug Disposition\",\"volume\":\"44 6\",\"pages\":\"396-405\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biopharmaceutics & Drug Disposition\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bdd.2374\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopharmaceutics & Drug Disposition","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bdd.2374","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Influence of Gegenqinlian decoction on pharmacokinetics and pharmacodynamics of saxagliptin in type 2 diabetes mellitus rats
Gegenqinlian decoction (GQD) is a classic prescription of traditional Chinese medicine (TCM), which originated from Shanghanlun. The combination of GQD and hypoglycemic drugs (saxagliptin, Sax, metformin) is often used to treat Type 2 diabetes mellitus (T2DM) in TCM clinics. However, the herb–drug interactions (HDIs) between GQD and hypoglycemic drugs are still unclear. In order to determine the safety of the combination, we assessed the influences of GQD on the pharmacokinetics and pharmacodynamics of Sax in T2DM rats. The plasma concentration of Sax (5 mg/kg) pretreated with GQD (freeze-dried powder, 1.35 g/kg) or not was determined by high-performance liquid chromatography (HPLC), and pharmacokinetics parameters were calculated. The influence of GQD on the pharmacodynamics of Sax was investigated by detecting the levels of weight, (see abbreviations list) OGTT, TC, TG, LDL-C, HDL-C, FBG, FINS, HOMA-IR, QUICKI, AST, ALT, and the liver coefficient. The Cmax, AUC0-t,and AUC0-∞ of Sax increased significantly in the combination group whether in normal or T2DM rats. The results of pharmacodynamics showed that the weight of rats in each treatment group increased. FBG, TC, TG, LDL-C, and HOMA-IR decreased, HDL-C, FINS, and QUICKI increased significantly (p < 0.05) compared with the model control group. The result showed that the combination of GQD and Sax could not only improve the hypoglycemic effect but also increase the plasma exposure of Sax. The potential HDIs between GQD and Sax should be taken into consideration in clinics. Moreover, for the complexity of the human compared with experimental animals, as well as genetic differences, the in-depth study should be carried out to assess the uniformity of the pharmacokinetics and pharmacodynamics between rats and humans.
期刊介绍:
Biopharmaceutics & Drug Dispositionpublishes original review articles, short communications, and reports in biopharmaceutics, drug disposition, pharmacokinetics and pharmacodynamics, especially those that have a direct relation to the drug discovery/development and the therapeutic use of drugs. These includes:
- animal and human pharmacological studies that focus on therapeutic response. pharmacodynamics, and toxicity related to plasma and tissue concentrations of drugs and their metabolites,
- in vitro and in vivo drug absorption, distribution, metabolism, transport, and excretion studies that facilitate investigations related to the use of drugs in man
- studies on membrane transport and enzymes, including their regulation and the impact of pharmacogenomics on drug absorption and disposition,
- simulation and modeling in drug discovery and development
- theoretical treatises
- includes themed issues and reviews
and exclude manuscripts on
- bioavailability studies reporting only on simple PK parameters such as Cmax, tmax and t1/2 without mechanistic interpretation
- analytical methods