Shiyong Wang, Tomohiko Nishiuchi, Carlo A Pignedoli, Xuelin Yao, Marco Di Giovannantonio, Yan Zhao, Akimitsu Narita, Xinliang Feng, Klaus Müllen, Pascal Ruffieux, Roman Fasel
{"title":"通过分子位阻和分子-底物范德华相互作用控制表面反应。","authors":"Shiyong Wang, Tomohiko Nishiuchi, Carlo A Pignedoli, Xuelin Yao, Marco Di Giovannantonio, Yan Zhao, Akimitsu Narita, Xinliang Feng, Klaus Müllen, Pascal Ruffieux, Roman Fasel","doi":"10.1007/s44214-022-00023-9","DOIUrl":null,"url":null,"abstract":"<p><p>On-surface synthesis is a rapidly developing field involving chemical reactions on well-defined solid surfaces to access synthesis of low-dimensional organic nanostructures which cannot be achieved via traditional solution chemistry. On-surface reactions critically depend on a high degree of chemoselectivity in order to achieve an optimum balance between target structure and possible side products. Here, we demonstrate synthesis of graphene nanoribbons with a large unit cell based on steric hindrance-induced complete chemoselectivity as revealed by scanning probe microscopy measurements and density functional theory calculations. Our results disclose that combined molecule-substrate van der Waals interactions and intermolecular steric hindrance promote a selective aryl-aryl coupling, giving rise to high-quality uniform graphene nanostructures. The established coupling strategy has been used to synthesize two types of graphene nanoribbons with different edge topologies inducing a pronounced variation of the electronic energy gaps. The demonstrated chemoselectivity is representative for n-anthryl precursor molecules and may be further exploited to synthesize graphene nanoribbons with novel electronic, topological and magnetic properties with implications for electronic and spintronic applications.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s44214-022-00023-9.</p>","PeriodicalId":74629,"journal":{"name":"Quantum frontiers","volume":"1 1","pages":"23"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9809985/pdf/","citationCount":"2","resultStr":"{\"title\":\"Steering on-surface reactions through molecular steric hindrance and molecule-substrate van der Waals interactions.\",\"authors\":\"Shiyong Wang, Tomohiko Nishiuchi, Carlo A Pignedoli, Xuelin Yao, Marco Di Giovannantonio, Yan Zhao, Akimitsu Narita, Xinliang Feng, Klaus Müllen, Pascal Ruffieux, Roman Fasel\",\"doi\":\"10.1007/s44214-022-00023-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>On-surface synthesis is a rapidly developing field involving chemical reactions on well-defined solid surfaces to access synthesis of low-dimensional organic nanostructures which cannot be achieved via traditional solution chemistry. On-surface reactions critically depend on a high degree of chemoselectivity in order to achieve an optimum balance between target structure and possible side products. Here, we demonstrate synthesis of graphene nanoribbons with a large unit cell based on steric hindrance-induced complete chemoselectivity as revealed by scanning probe microscopy measurements and density functional theory calculations. Our results disclose that combined molecule-substrate van der Waals interactions and intermolecular steric hindrance promote a selective aryl-aryl coupling, giving rise to high-quality uniform graphene nanostructures. The established coupling strategy has been used to synthesize two types of graphene nanoribbons with different edge topologies inducing a pronounced variation of the electronic energy gaps. The demonstrated chemoselectivity is representative for n-anthryl precursor molecules and may be further exploited to synthesize graphene nanoribbons with novel electronic, topological and magnetic properties with implications for electronic and spintronic applications.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s44214-022-00023-9.</p>\",\"PeriodicalId\":74629,\"journal\":{\"name\":\"Quantum frontiers\",\"volume\":\"1 1\",\"pages\":\"23\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9809985/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s44214-022-00023-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44214-022-00023-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Steering on-surface reactions through molecular steric hindrance and molecule-substrate van der Waals interactions.
On-surface synthesis is a rapidly developing field involving chemical reactions on well-defined solid surfaces to access synthesis of low-dimensional organic nanostructures which cannot be achieved via traditional solution chemistry. On-surface reactions critically depend on a high degree of chemoselectivity in order to achieve an optimum balance between target structure and possible side products. Here, we demonstrate synthesis of graphene nanoribbons with a large unit cell based on steric hindrance-induced complete chemoselectivity as revealed by scanning probe microscopy measurements and density functional theory calculations. Our results disclose that combined molecule-substrate van der Waals interactions and intermolecular steric hindrance promote a selective aryl-aryl coupling, giving rise to high-quality uniform graphene nanostructures. The established coupling strategy has been used to synthesize two types of graphene nanoribbons with different edge topologies inducing a pronounced variation of the electronic energy gaps. The demonstrated chemoselectivity is representative for n-anthryl precursor molecules and may be further exploited to synthesize graphene nanoribbons with novel electronic, topological and magnetic properties with implications for electronic and spintronic applications.
Supplementary information: The online version contains supplementary material available at 10.1007/s44214-022-00023-9.