{"title":"在高度有效的非疫苗预防模式背景下设计艾滋病疫苗疗效试验。","authors":"Holly Janes, Yifan Zhu, Elizabeth R Brown","doi":"10.1007/s12561-020-09292-1","DOIUrl":null,"url":null,"abstract":"<p><p>The evolving HIV prevention landscape poses challenges to the statistical design of future trials of candidate HIV vaccines. Study designs must address the anticipated reduction in HIV incidence due to adding new prevention modalities to the standard prevention package provided to trial participants, and must also accommodate individual choices of participants with regard to the use of these modalities. We explore four potential trial designs that address these challenges, with a focus on accommodating the newest addition to the prevention package-antiretroviral-based oral pre-exposure prophylaxis (PrEP). The designs differ with respect to how individuals who take up oral PrEP at screening are handled. An All-Comers Design enrolls and randomizes all eligible individuals, a Decliners Design enrolls and randomizes only those who decline PrEP at screening, and Single and Multi-Stage Run-In Designs enroll all but randomize only those who decline PrEP or show inadequate adherence to PrEP after one or multiple run-in periods. We compare these designs with respect to required sample sizes, study duration, and resource requirements, using a simulation model that incorporates data on HIV risk and PrEP uptake and adherence among men who have sex with men (MSM) in the Americas. We advocate considering Run-In Designs for some future contexts, and identify their advantages and tradeoffs relative to the other designs. The design concepts apply beyond HIV vaccines to other prevention modalities being developed with the aim to achieve further reductions in HIV incidence.</p>","PeriodicalId":45094,"journal":{"name":"Statistics in Biosciences","volume":"12 3","pages":"468-494"},"PeriodicalIF":0.8000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10022814/pdf/","citationCount":"0","resultStr":"{\"title\":\"Designing HIV Vaccine Efficacy Trials in the Context of Highly Effective Non-vaccine Prevention Modalities.\",\"authors\":\"Holly Janes, Yifan Zhu, Elizabeth R Brown\",\"doi\":\"10.1007/s12561-020-09292-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The evolving HIV prevention landscape poses challenges to the statistical design of future trials of candidate HIV vaccines. Study designs must address the anticipated reduction in HIV incidence due to adding new prevention modalities to the standard prevention package provided to trial participants, and must also accommodate individual choices of participants with regard to the use of these modalities. We explore four potential trial designs that address these challenges, with a focus on accommodating the newest addition to the prevention package-antiretroviral-based oral pre-exposure prophylaxis (PrEP). The designs differ with respect to how individuals who take up oral PrEP at screening are handled. An All-Comers Design enrolls and randomizes all eligible individuals, a Decliners Design enrolls and randomizes only those who decline PrEP at screening, and Single and Multi-Stage Run-In Designs enroll all but randomize only those who decline PrEP or show inadequate adherence to PrEP after one or multiple run-in periods. We compare these designs with respect to required sample sizes, study duration, and resource requirements, using a simulation model that incorporates data on HIV risk and PrEP uptake and adherence among men who have sex with men (MSM) in the Americas. We advocate considering Run-In Designs for some future contexts, and identify their advantages and tradeoffs relative to the other designs. The design concepts apply beyond HIV vaccines to other prevention modalities being developed with the aim to achieve further reductions in HIV incidence.</p>\",\"PeriodicalId\":45094,\"journal\":{\"name\":\"Statistics in Biosciences\",\"volume\":\"12 3\",\"pages\":\"468-494\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10022814/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics in Biosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12561-020-09292-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/10/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Biosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12561-020-09292-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/10/22 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Designing HIV Vaccine Efficacy Trials in the Context of Highly Effective Non-vaccine Prevention Modalities.
The evolving HIV prevention landscape poses challenges to the statistical design of future trials of candidate HIV vaccines. Study designs must address the anticipated reduction in HIV incidence due to adding new prevention modalities to the standard prevention package provided to trial participants, and must also accommodate individual choices of participants with regard to the use of these modalities. We explore four potential trial designs that address these challenges, with a focus on accommodating the newest addition to the prevention package-antiretroviral-based oral pre-exposure prophylaxis (PrEP). The designs differ with respect to how individuals who take up oral PrEP at screening are handled. An All-Comers Design enrolls and randomizes all eligible individuals, a Decliners Design enrolls and randomizes only those who decline PrEP at screening, and Single and Multi-Stage Run-In Designs enroll all but randomize only those who decline PrEP or show inadequate adherence to PrEP after one or multiple run-in periods. We compare these designs with respect to required sample sizes, study duration, and resource requirements, using a simulation model that incorporates data on HIV risk and PrEP uptake and adherence among men who have sex with men (MSM) in the Americas. We advocate considering Run-In Designs for some future contexts, and identify their advantages and tradeoffs relative to the other designs. The design concepts apply beyond HIV vaccines to other prevention modalities being developed with the aim to achieve further reductions in HIV incidence.
期刊介绍:
Statistics in Biosciences (SIBS) is published three times a year in print and electronic form. It aims at development and application of statistical methods and their interface with other quantitative methods, such as computational and mathematical methods, in biological and life science, health science, and biopharmaceutical and biotechnological science.
SIBS publishes scientific papers and review articles in four sections, with the first two sections as the primary sections. Original Articles publish novel statistical and quantitative methods in biosciences. The Bioscience Case Studies and Practice Articles publish papers that advance statistical practice in biosciences, such as case studies, innovative applications of existing methods that further understanding of subject-matter science, evaluation of existing methods and data sources. Review Articles publish papers that review an area of statistical and quantitative methodology, software, and data sources in biosciences. Commentaries provide perspectives of research topics or policy issues that are of current quantitative interest in biosciences, reactions to an article published in the journal, and scholarly essays. Substantive science is essential in motivating and demonstrating the methodological development and use for an article to be acceptable. Articles published in SIBS share the goal of promoting evidence-based real world practice and policy making through effective and timely interaction and communication of statisticians and quantitative researchers with subject-matter scientists in biosciences.