线性规划中的广义容量与对偶定理

M. Ohtsuka
{"title":"线性规划中的广义容量与对偶定理","authors":"M. Ohtsuka","doi":"10.32917/HMJ/1206139188","DOIUrl":null,"url":null,"abstract":"Recently certain results in the theory of games and linear programming have been applied to potential theory. We mention M. Nakai [2], B. Fuglede [1] and M. Ohtsuka [4]. Our paper is along this line. More precisely, the minimax theorem in the theory of games was applied to the theory of capacity in [4]. For a compact Hausdorff space K and an extended real-valued lower semicontinuous function Φ on K x K which is bounded below, the author established","PeriodicalId":17080,"journal":{"name":"Journal of science of the Hiroshima University Ser. A Mathematics, physics, chemistry","volume":"17 1","pages":"45-56"},"PeriodicalIF":0.0000,"publicationDate":"1966-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Generalized capacity and duality theorem in linear programming\",\"authors\":\"M. Ohtsuka\",\"doi\":\"10.32917/HMJ/1206139188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently certain results in the theory of games and linear programming have been applied to potential theory. We mention M. Nakai [2], B. Fuglede [1] and M. Ohtsuka [4]. Our paper is along this line. More precisely, the minimax theorem in the theory of games was applied to the theory of capacity in [4]. For a compact Hausdorff space K and an extended real-valued lower semicontinuous function Φ on K x K which is bounded below, the author established\",\"PeriodicalId\":17080,\"journal\":{\"name\":\"Journal of science of the Hiroshima University Ser. A Mathematics, physics, chemistry\",\"volume\":\"17 1\",\"pages\":\"45-56\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1966-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of science of the Hiroshima University Ser. A Mathematics, physics, chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32917/HMJ/1206139188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of science of the Hiroshima University Ser. A Mathematics, physics, chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32917/HMJ/1206139188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

近年来,博弈论和线性规划的某些结果已被应用于势理论。我们提到了M. Nakai [2], B. Fuglede[1]和M. Ohtsuka[4]。我们的论文就是沿着这条线走的。更准确地说,博弈论中的极大极小定理在[4]中被应用到容量理论中。对于紧Hausdorff空间K和K x K上有界的扩展实值下半连续函数Φ,作者建立了
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized capacity and duality theorem in linear programming
Recently certain results in the theory of games and linear programming have been applied to potential theory. We mention M. Nakai [2], B. Fuglede [1] and M. Ohtsuka [4]. Our paper is along this line. More precisely, the minimax theorem in the theory of games was applied to the theory of capacity in [4]. For a compact Hausdorff space K and an extended real-valued lower semicontinuous function Φ on K x K which is bounded below, the author established
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信