基于rsamnyi熵的互信息半监督鸟类发声分割

Anshul Thakur, V. Abrol, Pulkit Sharma, Padmanabhan Rajan
{"title":"基于rsamnyi熵的互信息半监督鸟类发声分割","authors":"Anshul Thakur, V. Abrol, Pulkit Sharma, Padmanabhan Rajan","doi":"10.1109/MLSP.2017.8168118","DOIUrl":null,"url":null,"abstract":"In this paper we describe a semi-supervised algorithm to segment bird vocalizations using matrix factorization and Rényi entropy based mutual information. Singular value decomposition (SVD) is applied on pooled time-frequency representations of bird vocalizations to learn basis vectors. By utilizing only a few of the bases, a compact feature representation is obtained for input test data. Rényi entropy based mutual information is calculated between feature representations of consecutive frames. After some simple post-processing, a threshold is used to reliably distinguish bird vocalizations from other sounds. The algorithm is evaluated on the field recordings of different bird species and different SNR conditions. The results highlight the effectiveness of the proposed method in all SNR conditions, improvements over other methods, and its generality.","PeriodicalId":6542,"journal":{"name":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"101 ","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Rényi entropy based mutual information for semi-supervised bird vocalization segmentation\",\"authors\":\"Anshul Thakur, V. Abrol, Pulkit Sharma, Padmanabhan Rajan\",\"doi\":\"10.1109/MLSP.2017.8168118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we describe a semi-supervised algorithm to segment bird vocalizations using matrix factorization and Rényi entropy based mutual information. Singular value decomposition (SVD) is applied on pooled time-frequency representations of bird vocalizations to learn basis vectors. By utilizing only a few of the bases, a compact feature representation is obtained for input test data. Rényi entropy based mutual information is calculated between feature representations of consecutive frames. After some simple post-processing, a threshold is used to reliably distinguish bird vocalizations from other sounds. The algorithm is evaluated on the field recordings of different bird species and different SNR conditions. The results highlight the effectiveness of the proposed method in all SNR conditions, improvements over other methods, and its generality.\",\"PeriodicalId\":6542,\"journal\":{\"name\":\"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)\",\"volume\":\"101 \",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLSP.2017.8168118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2017.8168118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文描述了一种基于矩阵分解和基于r尼米熵互信息的半监督算法来分割鸟类发声。将奇异值分解(SVD)应用于鸟叫声的时频混合表示,学习基向量。仅利用其中的几个基,就得到了输入测试数据的一个紧凑的特征表示。在连续帧的特征表示之间计算基于r熵的互信息。经过一些简单的后处理后,使用阈值来可靠地区分鸟类的叫声和其他声音。在不同鸟类的野外记录和不同信噪比条件下,对该算法进行了评价。结果突出了所提出方法在所有信噪比条件下的有效性,与其他方法相比的改进,以及其通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rényi entropy based mutual information for semi-supervised bird vocalization segmentation
In this paper we describe a semi-supervised algorithm to segment bird vocalizations using matrix factorization and Rényi entropy based mutual information. Singular value decomposition (SVD) is applied on pooled time-frequency representations of bird vocalizations to learn basis vectors. By utilizing only a few of the bases, a compact feature representation is obtained for input test data. Rényi entropy based mutual information is calculated between feature representations of consecutive frames. After some simple post-processing, a threshold is used to reliably distinguish bird vocalizations from other sounds. The algorithm is evaluated on the field recordings of different bird species and different SNR conditions. The results highlight the effectiveness of the proposed method in all SNR conditions, improvements over other methods, and its generality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信