G. Vanden Berghe, M. Van Daele, H. Vande Vyver
{"title":"指数拟合算法:固定或频率依赖的结点?","authors":"G. Vanden Berghe, M. Van Daele, H. Vande Vyver","doi":"10.1002/anac.200310005","DOIUrl":null,"url":null,"abstract":"<p>Exponentially-fitted algorithms are constructed for the derivation of Gauss formulae and implicit Runge-Kutta methods of collocation type making them tuned for oscillatory (or exponential) functions. The weights and the abscissas of these formulae can depend naturally on the frequency <i>ω</i> by the very construction. For twopoints Gauss formulae and two-step Runge-Kutta methods a detailed study of the obtained results is made. In particular the difference in the numerical application of these algorithms with fixed points and/or frequency dependent nodes is analysed. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)</p>","PeriodicalId":100108,"journal":{"name":"Applied Numerical Analysis & Computational Mathematics","volume":"1 1","pages":"49-65"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/anac.200310005","citationCount":"11","resultStr":"{\"title\":\"Exponentially-fitted algorithms: fixed or frequency dependent knot points?\",\"authors\":\"G. Vanden Berghe, M. Van Daele, H. Vande Vyver\",\"doi\":\"10.1002/anac.200310005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Exponentially-fitted algorithms are constructed for the derivation of Gauss formulae and implicit Runge-Kutta methods of collocation type making them tuned for oscillatory (or exponential) functions. The weights and the abscissas of these formulae can depend naturally on the frequency <i>ω</i> by the very construction. For twopoints Gauss formulae and two-step Runge-Kutta methods a detailed study of the obtained results is made. In particular the difference in the numerical application of these algorithms with fixed points and/or frequency dependent nodes is analysed. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)</p>\",\"PeriodicalId\":100108,\"journal\":{\"name\":\"Applied Numerical Analysis & Computational Mathematics\",\"volume\":\"1 1\",\"pages\":\"49-65\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/anac.200310005\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Analysis & Computational Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anac.200310005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Analysis & Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anac.200310005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11