基于案例推理的层次模因算法特征选择与相似性建模相结合

N. Xiong, P. Funk
{"title":"基于案例推理的层次模因算法特征选择与相似性建模相结合","authors":"N. Xiong, P. Funk","doi":"10.1109/CEC.2010.5586421","DOIUrl":null,"url":null,"abstract":"This paper proposes a new approach to discover knowledge about key features together with their degrees of importance in the context of case-based reasoning. A hierarchical memetic algorithm is designed for this purpose to search for the best feature subsets and similarity models at the same time. The objective of the memetic search is to optimize the possibility distributions derived for individual cases in the case library under a leave-one-out procedure. The information about the importance of selected features is revealed from the magnitudes of parameters of the learned similarity model. The effectiveness of the proposed approach has been shown by evaluation results on the benchmark data sets from the UCI repository and in comparisons with other machine learning techniques.","PeriodicalId":6344,"journal":{"name":"2009 IEEE Congress on Evolutionary Computation","volume":"62 ","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Combined feature selection and similarity modelling in case-based reasoning using hierarchical memetic algorithm\",\"authors\":\"N. Xiong, P. Funk\",\"doi\":\"10.1109/CEC.2010.5586421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new approach to discover knowledge about key features together with their degrees of importance in the context of case-based reasoning. A hierarchical memetic algorithm is designed for this purpose to search for the best feature subsets and similarity models at the same time. The objective of the memetic search is to optimize the possibility distributions derived for individual cases in the case library under a leave-one-out procedure. The information about the importance of selected features is revealed from the magnitudes of parameters of the learned similarity model. The effectiveness of the proposed approach has been shown by evaluation results on the benchmark data sets from the UCI repository and in comparisons with other machine learning techniques.\",\"PeriodicalId\":6344,\"journal\":{\"name\":\"2009 IEEE Congress on Evolutionary Computation\",\"volume\":\"62 \",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Congress on Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2010.5586421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2010.5586421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

本文提出了一种在基于案例的推理中发现关键特征及其重要程度的新方法。为此设计了一种分层模因算法,同时搜索最佳特征子集和相似度模型。模因搜索的目标是优化案例库中个别案例在“留一”过程下的可能性分布。所选特征的重要性信息是通过学习到的相似度模型参数的大小来揭示的。通过对来自UCI存储库的基准数据集的评估结果以及与其他机器学习技术的比较,表明了所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combined feature selection and similarity modelling in case-based reasoning using hierarchical memetic algorithm
This paper proposes a new approach to discover knowledge about key features together with their degrees of importance in the context of case-based reasoning. A hierarchical memetic algorithm is designed for this purpose to search for the best feature subsets and similarity models at the same time. The objective of the memetic search is to optimize the possibility distributions derived for individual cases in the case library under a leave-one-out procedure. The information about the importance of selected features is revealed from the magnitudes of parameters of the learned similarity model. The effectiveness of the proposed approach has been shown by evaluation results on the benchmark data sets from the UCI repository and in comparisons with other machine learning techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信