基于潜泊松因子模型的地理分割

Rose Yu, A. Gelfand, Suju Rajan, C. Shahabi, Yan Liu
{"title":"基于潜泊松因子模型的地理分割","authors":"Rose Yu, A. Gelfand, Suju Rajan, C. Shahabi, Yan Liu","doi":"10.1145/2835776.2835806","DOIUrl":null,"url":null,"abstract":"Discovering latent structures in spatial data is of critical importance to understanding the user behavior of location-based services. In this paper, we study the problem of geographic segmentation of spatial data, which involves dividing a collection of observations into distinct geo-spatial regions and uncovering abstract correlation structures in the data. We introduce a novel, Latent Poisson Factor (LPF) model to describe spatial count data. The model describes the spatial counts as a Poisson distribution with a mean that factors over a joint item-location latent space. The latent factors are constrained with weak labels to help uncover interesting spatial dependencies. We study the LPF model on a mobile app usage data set and a news article readership data set. We empirically demonstrate its effectiveness on a variety of prediction tasks on these two data sets.","PeriodicalId":20567,"journal":{"name":"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining","volume":"97 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Geographic Segmentation via Latent Poisson Factor Model\",\"authors\":\"Rose Yu, A. Gelfand, Suju Rajan, C. Shahabi, Yan Liu\",\"doi\":\"10.1145/2835776.2835806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discovering latent structures in spatial data is of critical importance to understanding the user behavior of location-based services. In this paper, we study the problem of geographic segmentation of spatial data, which involves dividing a collection of observations into distinct geo-spatial regions and uncovering abstract correlation structures in the data. We introduce a novel, Latent Poisson Factor (LPF) model to describe spatial count data. The model describes the spatial counts as a Poisson distribution with a mean that factors over a joint item-location latent space. The latent factors are constrained with weak labels to help uncover interesting spatial dependencies. We study the LPF model on a mobile app usage data set and a news article readership data set. We empirically demonstrate its effectiveness on a variety of prediction tasks on these two data sets.\",\"PeriodicalId\":20567,\"journal\":{\"name\":\"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining\",\"volume\":\"97 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2835776.2835806\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2835776.2835806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

发现空间数据中的潜在结构对于理解基于位置的服务的用户行为至关重要。本文研究了空间数据的地理分割问题,即将一组观测数据划分为不同的地理空间区域,并揭示数据中的抽象相关结构。我们引入了一种新的潜在泊松因子(LPF)模型来描述空间计数数据。该模型将空间计数描述为一个泊松分布,其平均值影响了联合项目位置潜在空间。潜在因素受到弱标签的约束,以帮助发现有趣的空间依赖性。我们在移动应用程序使用数据集和新闻文章读者数据集上研究了LPF模型。我们通过经验证明了它在这两个数据集上的各种预测任务上的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geographic Segmentation via Latent Poisson Factor Model
Discovering latent structures in spatial data is of critical importance to understanding the user behavior of location-based services. In this paper, we study the problem of geographic segmentation of spatial data, which involves dividing a collection of observations into distinct geo-spatial regions and uncovering abstract correlation structures in the data. We introduce a novel, Latent Poisson Factor (LPF) model to describe spatial count data. The model describes the spatial counts as a Poisson distribution with a mean that factors over a joint item-location latent space. The latent factors are constrained with weak labels to help uncover interesting spatial dependencies. We study the LPF model on a mobile app usage data set and a news article readership data set. We empirically demonstrate its effectiveness on a variety of prediction tasks on these two data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信