Rose Yu, A. Gelfand, Suju Rajan, C. Shahabi, Yan Liu
{"title":"基于潜泊松因子模型的地理分割","authors":"Rose Yu, A. Gelfand, Suju Rajan, C. Shahabi, Yan Liu","doi":"10.1145/2835776.2835806","DOIUrl":null,"url":null,"abstract":"Discovering latent structures in spatial data is of critical importance to understanding the user behavior of location-based services. In this paper, we study the problem of geographic segmentation of spatial data, which involves dividing a collection of observations into distinct geo-spatial regions and uncovering abstract correlation structures in the data. We introduce a novel, Latent Poisson Factor (LPF) model to describe spatial count data. The model describes the spatial counts as a Poisson distribution with a mean that factors over a joint item-location latent space. The latent factors are constrained with weak labels to help uncover interesting spatial dependencies. We study the LPF model on a mobile app usage data set and a news article readership data set. We empirically demonstrate its effectiveness on a variety of prediction tasks on these two data sets.","PeriodicalId":20567,"journal":{"name":"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining","volume":"97 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Geographic Segmentation via Latent Poisson Factor Model\",\"authors\":\"Rose Yu, A. Gelfand, Suju Rajan, C. Shahabi, Yan Liu\",\"doi\":\"10.1145/2835776.2835806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discovering latent structures in spatial data is of critical importance to understanding the user behavior of location-based services. In this paper, we study the problem of geographic segmentation of spatial data, which involves dividing a collection of observations into distinct geo-spatial regions and uncovering abstract correlation structures in the data. We introduce a novel, Latent Poisson Factor (LPF) model to describe spatial count data. The model describes the spatial counts as a Poisson distribution with a mean that factors over a joint item-location latent space. The latent factors are constrained with weak labels to help uncover interesting spatial dependencies. We study the LPF model on a mobile app usage data set and a news article readership data set. We empirically demonstrate its effectiveness on a variety of prediction tasks on these two data sets.\",\"PeriodicalId\":20567,\"journal\":{\"name\":\"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining\",\"volume\":\"97 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2835776.2835806\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2835776.2835806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Geographic Segmentation via Latent Poisson Factor Model
Discovering latent structures in spatial data is of critical importance to understanding the user behavior of location-based services. In this paper, we study the problem of geographic segmentation of spatial data, which involves dividing a collection of observations into distinct geo-spatial regions and uncovering abstract correlation structures in the data. We introduce a novel, Latent Poisson Factor (LPF) model to describe spatial count data. The model describes the spatial counts as a Poisson distribution with a mean that factors over a joint item-location latent space. The latent factors are constrained with weak labels to help uncover interesting spatial dependencies. We study the LPF model on a mobile app usage data set and a news article readership data set. We empirically demonstrate its effectiveness on a variety of prediction tasks on these two data sets.