{"title":"基于钙钛矿铁电体的非晶材料","authors":"S. Gridnev, L. Korotkov","doi":"10.23647/ca.md20202808","DOIUrl":null,"url":null,"abstract":"The methods of preparation, as well as the structure and most relevant physical properties of amorphous materials based on ferroelectrics with perovskite structure are reviewed. The theoretical basis for the possibility of ferroelectricity in non-crystalline solids is discussed. The structural relaxation in a glassy state and the crystallization processes leading to the formation of a ferroelectric phase are considered. The structure and physical properties of thin-film amorphous ferroelectrics that demonstrate noticeable differences from the properties of the same materials in bulk state are discussed separately","PeriodicalId":19388,"journal":{"name":"OAJ Materials and Devices","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Amorphous materials based on perovskite ferroelectrics\",\"authors\":\"S. Gridnev, L. Korotkov\",\"doi\":\"10.23647/ca.md20202808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The methods of preparation, as well as the structure and most relevant physical properties of amorphous materials based on ferroelectrics with perovskite structure are reviewed. The theoretical basis for the possibility of ferroelectricity in non-crystalline solids is discussed. The structural relaxation in a glassy state and the crystallization processes leading to the formation of a ferroelectric phase are considered. The structure and physical properties of thin-film amorphous ferroelectrics that demonstrate noticeable differences from the properties of the same materials in bulk state are discussed separately\",\"PeriodicalId\":19388,\"journal\":{\"name\":\"OAJ Materials and Devices\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OAJ Materials and Devices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23647/ca.md20202808\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OAJ Materials and Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23647/ca.md20202808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Amorphous materials based on perovskite ferroelectrics
The methods of preparation, as well as the structure and most relevant physical properties of amorphous materials based on ferroelectrics with perovskite structure are reviewed. The theoretical basis for the possibility of ferroelectricity in non-crystalline solids is discussed. The structural relaxation in a glassy state and the crystallization processes leading to the formation of a ferroelectric phase are considered. The structure and physical properties of thin-film amorphous ferroelectrics that demonstrate noticeable differences from the properties of the same materials in bulk state are discussed separately