pro-p群的广义Stallings分解定理

Mattheus Aguiar, P. Zalesski
{"title":"pro-p群的广义Stallings分解定理","authors":"Mattheus Aguiar, P. Zalesski","doi":"10.2422/2036-2145.202111_011","DOIUrl":null,"url":null,"abstract":"The celebrated Stallings' decomposition theorem states that the splitting of a finite index subgroup $H$ of a finitely generated group $G$ as an amalgamated free product or an HNN-extension over a finite group implies the same for $G$. We generalize the pro-$p$ version of it proved by Weigel and the second author to splittings over infinite pro-$p$ groups. This generalization does not have any abstract analogs. We also prove that generalized accessibility of finitely generated pro-$p$ groups is closed for commensurability.","PeriodicalId":8132,"journal":{"name":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Stallings' decomposition theorems for pro-p groups\",\"authors\":\"Mattheus Aguiar, P. Zalesski\",\"doi\":\"10.2422/2036-2145.202111_011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The celebrated Stallings' decomposition theorem states that the splitting of a finite index subgroup $H$ of a finitely generated group $G$ as an amalgamated free product or an HNN-extension over a finite group implies the same for $G$. We generalize the pro-$p$ version of it proved by Weigel and the second author to splittings over infinite pro-$p$ groups. This generalization does not have any abstract analogs. We also prove that generalized accessibility of finitely generated pro-$p$ groups is closed for commensurability.\",\"PeriodicalId\":8132,\"journal\":{\"name\":\"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2422/2036-2145.202111_011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2422/2036-2145.202111_011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

著名的Stallings分解定理指出,有限生成群$G$的有限索引子群$H$的分裂为一个合并的自由积或有限群上的hnn扩展意味着$G$具有相同的自由积。我们将Weigel和第二作者证明的亲$p$版本推广到无限亲$p$群上的分裂。这个概括没有任何抽象的类比。我们还证明了有限生成的pro-$p$群的广义可达性对于可通约性是封闭的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Stallings' decomposition theorems for pro-p groups
The celebrated Stallings' decomposition theorem states that the splitting of a finite index subgroup $H$ of a finitely generated group $G$ as an amalgamated free product or an HNN-extension over a finite group implies the same for $G$. We generalize the pro-$p$ version of it proved by Weigel and the second author to splittings over infinite pro-$p$ groups. This generalization does not have any abstract analogs. We also prove that generalized accessibility of finitely generated pro-$p$ groups is closed for commensurability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信