GPSRL:从异构患者数据中学习半参数贝叶斯生存规则列表

Ameer Hamza Shakur, Xiaoning Qian, Zhangyang Wang, B. Mortazavi, Shuai Huang
{"title":"GPSRL:从异构患者数据中学习半参数贝叶斯生存规则列表","authors":"Ameer Hamza Shakur, Xiaoning Qian, Zhangyang Wang, B. Mortazavi, Shuai Huang","doi":"10.1109/ICPR48806.2021.9413157","DOIUrl":null,"url":null,"abstract":"Survival data is often collected in medical applications from a heterogeneous population of patients. While in the past, popular survival models focused on modeling the average effect of the covariates on survival outcomes, rapidly advancing sensing and information technologies have provided opportunities to further model the heterogeneity of the population as well as the non-linearity of the survival risk. With this motivation, we propose a new semi-parametric Bayesian Survival Rule List model in this paper. Our model derives a rule-based decision-making approach, while within the regime defined by each rule, survival risk is modelled via a Gaussian process latent variable model. Markov Chain Monte Carlo with a nested Laplace approximation on the Gaussian process posterior is used to search over the posterior of the rule lists efficiently. The use of ordered rule lists enables us to model heterogeneity while keeping the model complexity in check. Performance evaluations on a synthetic heterogeneous survival dataset and a real world sepsis survival dataset demonstrate the effectiveness of our model.","PeriodicalId":6783,"journal":{"name":"2020 25th International Conference on Pattern Recognition (ICPR)","volume":"14 1","pages":"10608-10615"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"GPSRL: Learning Semi-Parametric Bayesian Survival Rule Lists from Heterogeneous Patient Data\",\"authors\":\"Ameer Hamza Shakur, Xiaoning Qian, Zhangyang Wang, B. Mortazavi, Shuai Huang\",\"doi\":\"10.1109/ICPR48806.2021.9413157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Survival data is often collected in medical applications from a heterogeneous population of patients. While in the past, popular survival models focused on modeling the average effect of the covariates on survival outcomes, rapidly advancing sensing and information technologies have provided opportunities to further model the heterogeneity of the population as well as the non-linearity of the survival risk. With this motivation, we propose a new semi-parametric Bayesian Survival Rule List model in this paper. Our model derives a rule-based decision-making approach, while within the regime defined by each rule, survival risk is modelled via a Gaussian process latent variable model. Markov Chain Monte Carlo with a nested Laplace approximation on the Gaussian process posterior is used to search over the posterior of the rule lists efficiently. The use of ordered rule lists enables us to model heterogeneity while keeping the model complexity in check. Performance evaluations on a synthetic heterogeneous survival dataset and a real world sepsis survival dataset demonstrate the effectiveness of our model.\",\"PeriodicalId\":6783,\"journal\":{\"name\":\"2020 25th International Conference on Pattern Recognition (ICPR)\",\"volume\":\"14 1\",\"pages\":\"10608-10615\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 25th International Conference on Pattern Recognition (ICPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR48806.2021.9413157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 25th International Conference on Pattern Recognition (ICPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR48806.2021.9413157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在医学应用中,生存数据通常是从异质患者群体中收集的。在过去,流行的生存模型侧重于对协变量对生存结果的平均影响进行建模,而快速发展的传感和信息技术为进一步模拟种群的异质性以及生存风险的非线性提供了机会。基于这一动机,本文提出了一种新的半参数贝叶斯生存规则表模型。我们的模型衍生出一种基于规则的决策方法,而在每条规则定义的制度中,生存风险通过高斯过程潜在变量模型建模。利用马尔科夫链蒙特卡罗算法在高斯过程后验上嵌套拉普拉斯逼近,有效地搜索规则表的后验。有序规则列表的使用使我们能够在控制模型复杂性的同时建模异构性。在合成异质生存数据集和真实脓毒症生存数据集上的性能评估证明了我们模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GPSRL: Learning Semi-Parametric Bayesian Survival Rule Lists from Heterogeneous Patient Data
Survival data is often collected in medical applications from a heterogeneous population of patients. While in the past, popular survival models focused on modeling the average effect of the covariates on survival outcomes, rapidly advancing sensing and information technologies have provided opportunities to further model the heterogeneity of the population as well as the non-linearity of the survival risk. With this motivation, we propose a new semi-parametric Bayesian Survival Rule List model in this paper. Our model derives a rule-based decision-making approach, while within the regime defined by each rule, survival risk is modelled via a Gaussian process latent variable model. Markov Chain Monte Carlo with a nested Laplace approximation on the Gaussian process posterior is used to search over the posterior of the rule lists efficiently. The use of ordered rule lists enables us to model heterogeneity while keeping the model complexity in check. Performance evaluations on a synthetic heterogeneous survival dataset and a real world sepsis survival dataset demonstrate the effectiveness of our model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信