针对外部数据库进行图像去噪

Enming Luo, Stanley H. Chan, Truong Q. Nguyen
{"title":"针对外部数据库进行图像去噪","authors":"Enming Luo, Stanley H. Chan, Truong Q. Nguyen","doi":"10.1109/ICASSP.2014.6854040","DOIUrl":null,"url":null,"abstract":"Classical image denoising algorithms based on single noisy images and generic image databases will soon reach their performance limits. In this paper, we propose to denoise images using targeted external image databases. Formulating denoising as an optimal filter design problem, we utilize the targeted databases to (1) determine the basis functions of the optimal filter by means of group sparsity; (2) determine the spectral coefficients of the optimal filter by means of localized priors. For a variety of scenarios such as text images, multiview images, and face images, we demonstrate superior denoising results over existing algorithms.","PeriodicalId":6545,"journal":{"name":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"119 1","pages":"2450-2454"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Image denoising by targeted external databases\",\"authors\":\"Enming Luo, Stanley H. Chan, Truong Q. Nguyen\",\"doi\":\"10.1109/ICASSP.2014.6854040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classical image denoising algorithms based on single noisy images and generic image databases will soon reach their performance limits. In this paper, we propose to denoise images using targeted external image databases. Formulating denoising as an optimal filter design problem, we utilize the targeted databases to (1) determine the basis functions of the optimal filter by means of group sparsity; (2) determine the spectral coefficients of the optimal filter by means of localized priors. For a variety of scenarios such as text images, multiview images, and face images, we demonstrate superior denoising results over existing algorithms.\",\"PeriodicalId\":6545,\"journal\":{\"name\":\"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"119 1\",\"pages\":\"2450-2454\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2014.6854040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2014.6854040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

基于单一噪声图像和通用图像数据库的经典图像去噪算法很快就会达到其性能极限。在本文中,我们提出使用目标外部图像数据库对图像进行去噪。将去噪作为最优滤波器设计问题,我们利用目标数据库:(1)通过群稀疏性确定最优滤波器的基函数;(2)利用局部先验确定最优滤波器的光谱系数。对于文本图像、多视图图像和人脸图像等各种场景,我们展示了优于现有算法的去噪结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image denoising by targeted external databases
Classical image denoising algorithms based on single noisy images and generic image databases will soon reach their performance limits. In this paper, we propose to denoise images using targeted external image databases. Formulating denoising as an optimal filter design problem, we utilize the targeted databases to (1) determine the basis functions of the optimal filter by means of group sparsity; (2) determine the spectral coefficients of the optimal filter by means of localized priors. For a variety of scenarios such as text images, multiview images, and face images, we demonstrate superior denoising results over existing algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信