{"title":"Al - Bi合金快速凝固箔的组织","authors":"V. Shepelevich","doi":"10.33581/2520-2243-2022-1-75-79","DOIUrl":null,"url":null,"abstract":"The results of study of the microstructure and texture of aluminum alloys, containing 0.12 and 0.25 at. % Bi, obtained with high-speed solidification, are presented (melt cooling rate liquid – not less 105 K /s). Texture (111) aluminum is formed in the rapidly solidified foils of investigated alloys and it is conserved under annealing at 523 K during 2 h. The average chord of bismuth sections does not exceed 0.05 µm. As the crystallisation front moves from surface A contacted with crystalliser to the surface B, the average size of dispersed bismuth particles increases. Foils of the alloys dissolve in water at room temperature actively forming hydrogen bubbles in vessel with water, white powder of aluminum oxide in an amorphous state and bismuth precipitations. Isotermical annealing of foils at 573 K for 5 h causes a change in distribution of chords in size groups and increases their average value. After the annealing bismuth particles are localised on low- and high-angle boundaries. The rapidly solidified foils of Al – Bi system can be used to produced hydrogen, aluminum oxide powder and create technical devices using hydrogen.","PeriodicalId":17264,"journal":{"name":"Journal of the Belarusian State University. Physics","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The structure of rapidly solidified foil of Al – Bi alloys\",\"authors\":\"V. Shepelevich\",\"doi\":\"10.33581/2520-2243-2022-1-75-79\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The results of study of the microstructure and texture of aluminum alloys, containing 0.12 and 0.25 at. % Bi, obtained with high-speed solidification, are presented (melt cooling rate liquid – not less 105 K /s). Texture (111) aluminum is formed in the rapidly solidified foils of investigated alloys and it is conserved under annealing at 523 K during 2 h. The average chord of bismuth sections does not exceed 0.05 µm. As the crystallisation front moves from surface A contacted with crystalliser to the surface B, the average size of dispersed bismuth particles increases. Foils of the alloys dissolve in water at room temperature actively forming hydrogen bubbles in vessel with water, white powder of aluminum oxide in an amorphous state and bismuth precipitations. Isotermical annealing of foils at 573 K for 5 h causes a change in distribution of chords in size groups and increases their average value. After the annealing bismuth particles are localised on low- and high-angle boundaries. The rapidly solidified foils of Al – Bi system can be used to produced hydrogen, aluminum oxide powder and create technical devices using hydrogen.\",\"PeriodicalId\":17264,\"journal\":{\"name\":\"Journal of the Belarusian State University. Physics\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Belarusian State University. Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33581/2520-2243-2022-1-75-79\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Belarusian State University. Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33581/2520-2243-2022-1-75-79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
研究了含0.12和0.25 at的铝合金的显微组织和织构。给出了高速凝固得到的% Bi(熔体冷却速率不低于105 K /s)。织构(111)铝在快速凝固的合金箔中形成,并在523 K下退火2 h时保持不变。铋截面的平均弦长不超过0.05µm。随着结晶锋从与结晶剂接触的表面A向表面B移动,分散铋颗粒的平均尺寸增大。合金箔在室温下溶于水,在有水的容器中活跃地形成氢气泡,无定形的白色氧化铝粉末和铋沉淀。在573k下等温退火5h后,弦在尺寸组中的分布发生了变化,其平均值增大。退火后铋粒子在低角和高角边界上局部化。铝铋体系的快速凝固箔可用于制氢、制氧化铝粉末和制氢技术装置。
The structure of rapidly solidified foil of Al – Bi alloys
The results of study of the microstructure and texture of aluminum alloys, containing 0.12 and 0.25 at. % Bi, obtained with high-speed solidification, are presented (melt cooling rate liquid – not less 105 K /s). Texture (111) aluminum is formed in the rapidly solidified foils of investigated alloys and it is conserved under annealing at 523 K during 2 h. The average chord of bismuth sections does not exceed 0.05 µm. As the crystallisation front moves from surface A contacted with crystalliser to the surface B, the average size of dispersed bismuth particles increases. Foils of the alloys dissolve in water at room temperature actively forming hydrogen bubbles in vessel with water, white powder of aluminum oxide in an amorphous state and bismuth precipitations. Isotermical annealing of foils at 573 K for 5 h causes a change in distribution of chords in size groups and increases their average value. After the annealing bismuth particles are localised on low- and high-angle boundaries. The rapidly solidified foils of Al – Bi system can be used to produced hydrogen, aluminum oxide powder and create technical devices using hydrogen.